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1    Introduction 

1.1    Technological Background 

Much attention has been given to the jet noise problem since the jet engine became a power plant 
for aircraft after the Second World War/ but there has been little modeling progress for realistic 
geometries. Scaling laws such as Lighthill's^ famous P oc Uj sound-power scaling with jet exit 
velocity that are derived from these theories have been enormously successful in motivating higher 
by-pass engines to reduce noise, but they have offered little further guidance for improvements 
through nozzle geometries or active flow control. The aircraft noise problem has recently become 
more pressing as both military and civilian use of air space increase. At present, the noise of some 
military aircraft is so intense that it can actually fatigue aircraft components. Airbase noise is 
becoming an important issue with several (some successful) lawsuits involved. Personnel are also 
affected—early predictions/results suggest that the JSF landing in vertical mode will be too loud 
for ground personnel to tolerate. The civilian aerospace sector faces their own serious aircraft 
noise problems. Technology transfer from the present work supports intense noise control eff'orts 
at domestic aerospace companies as well. 

Jet noise, like many complex fluid systems, has eluded control efforts for years simply because 
models lack the necessary fidelity. There is neither a sufficient understanding of the mechanics 
nor a practical simulation procedure to use in place of expensive trial-and-error experimenta- 
tion. Aeroacoustic flows are particularly challenging examples of this. Although theoretical noise 
sources were first formulated 50 years ago,^ their direct use in modeling and control has been 
limited since they require as input full flow field information. Even with this information, pro- 
vided recently for the first time by direct numerical simulation (DNS),^ effective controls are not 
obvious due to the complexity of the fiow. Noise control is particularly challenging since the 
acoustic energy is a tiny fraction of the flow energy (10~^ to 10"^ in even tremendously loud 
flows), making it easily "overlooked" by turbulence models. In addition, noise is an inherently 
unsteady phenomena, which makes noise modeling more challenging than standard turbulence 
modeling. 

Both active and passive controls have been used to control jets for mixing enhancement and 
noise suppression. Passive controls invariably involves modification of the nozzle geometry. Addi- 
tion of tabs to the nozzle"*'^ and other modifications of its shape^"-'^ have been shown to increase 
mixing. The mechanism for this is typically thought to be the generation of streamwise vorticity.-^-^ 
It has been known for a long time that certain nozzle geometry modifications also reduce noise. 
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found to reduce noise a couple decibels (effective perceived noise) with minimal incurred loss.^^ 
However, there is no systematic procedure for designing them and no complete description of how 
they work. Trial-and-error iterations play a role in their design. There is no way of knowing how 
effective they can be. 

Active control, which uses moving parts or other unsteady actuation such as small side jets,^^ 
synthetic jets,^'* or plasma discharge actuators,^^'-^^ can in principle offer greater control authority. 
Very significant mixing enhancements have been reported-^^ using a technology that has been 
demonstrated effective on full-scale engines.■'^^ The mechanism is typically understood in terms of 
interactions of turbulent flow structures. Our own simulations have been used to probe the details 
of this type of actuation and provide data difficult or impossible to measure in experiment.^^ We 
and others have also used evolution algorithms to identify effective active controls for jet mixing 
enhancement .1^,20 

However, there has been little or no success in using this actuator technology to control jet 
noise. By their nature they should offer greater effectiveness than passive controls, but it is simply 
not known how to use available actuators or how to optimize actuator designs to reduce noise. 
Our understanding of jet noise is too limited (or jet noise is too complex) to provide effective 
models, even at a phenomenological level, that can be used in an optimization procedure. 

1.2    Approach 

Faced with this poor understanding of jet noise, we developed and implemented an automatic 
means of reducing noise despite flow complexity. The control optimization is based on adjoint 
formulation, which circumvents the problem's complexity and facilitates the simultaneous opti- 
mization of literally thousands of control parameters. Recently, with the availability of high- 
speed computation, adjoint optimization procedures have been used in shape optimization of 
airfoils,^^"^^ minimization of dispersion of microchannel bends,^^ error estimation for discontin- 
uous Galerkin approximations of hyperbolic systems,^^ studies of drag reduction in a turbulent 
channel fiow,^^ analysis of mean flow refraction effects on sound radiated by localized sources in 
jets,^^ receptivity prediction in nonparallel flows,^° and some attempts to control unsteady com- 
pressible flow properties.^-^"^^ This project has pioneered its application to aeroacoustic control, 
which is in a sense more challenging because the underlying mechanism is less well understood 
than these other applications. There are reasonable reliable efficient tools (CFD) for predicting 
with (usually) acceptable accuracy the flow over an airfoil, the dispersion in a microchannel, or 
the drag force on an object, but tools with comparable fidelity do not exist for most aeroacoustic 
flows. Thus, it was even more important to develop techniques that circumvent the lack models 
and reduce noise anyhow. Our flows quieted by these methods also provided a unique opportunity 
to probe the flow physics and establish a deeper understanding of its working. 

In the work reported here, we found for the first time active controls that substantially quiet 
the flow. The techniques for doing this are discussed in section 2, and a simple numerical test to 
check the method and code is presented in section 3. Having simultaneously similar flows that 
are loud and quieted offered a unique opportunity to study the mechanism. This is discussed in 
section 4. An iteration-based immersed boundary was developed as well in preparation for the 
inclusion of complex geometries in to our calculations. This is discussed in section 5. 

2    Adjoint-based optimization 

Our approach is an automatic control optimization that employs the adjoint of the perturbed 
compressible flow equations, as documented in our published papers.^'''^^ (For the remainder of 



this report, they are simply called the "adjoint equations", omitting "perturbed".) The approach 
is shown schematically in figure 1. Given a numerical solution of the compressible flow equations 
for a jet, the adjoint equations are solved numerically backward in time to give the sensitivity 
of the noise, as defined quantitatively by an appropriate metric, to changes in the control at the 
nozzle. This sensitivity is used to update controls for the specific noise reduction objective that 
we have selected. It automatically tells us how to improve our controls, and it is insensitive to 
the complexity of the flow which has hampered progress in the past. 

Noise 

DNS Solution 

Sensitivity  ^ 
to Control   ' 

Figure 1: Schematic of the adjoint-based procedure for determining control sensitivity. 

2.1    Adjoint equations 

Extending Bewley's work^^ on incompressible flow, we derived the continuous form of the adjoint 
equations of the compressible viscous flow. The compressible viscous flow equations are written 
compactly as 

Ar(q)=F(x,i). (1) 

(2) 

(3) 

Accordingly, its linearized perturbation field is 

A^'(q') = F'(x,i), 

where the quantities ()' are defined by the Prechet differential as 

.^q(0 + .</>O-q(0)^ 

where 0 is arbitrary perturbation. With an inner product defined as 

(c, d)= I     I c(x, t)d{x, t) dA dt, (4) 
Jo    Js 

where S is problem specific space domain, we derive the adjoint equations by integration by parts, 

(A^'(q'),q*) = -(q',^*(q*)) + b, (5) 

where b is the boimdary terms and 

(6) 
V 

P* 



is introduced as adjoint variables. Finally, we get the adjoint equations with the form 
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Coefficients matrices A*, B*, and C* depend solely on the flow variables, p, u, v, and p, thus the 
adjoint solution depends on the forward flow solution. The matrix-like operator D*, which also 
depends on the forward flow solution, essentially represents the viscous effects from the flow field 
upon the adjoint field. F* is an adjoint forcing vector set by our choice of cost function J{cj)), 
which will be discussed later (section 2.2). 

2.2    Control optimization 

We now need to define a control function 0, which represents the actuation that changes the 
fiow, and cost function ^"(0), which in is a measure of the noise. 0 has a dimension equal to the 
number of control parameters. We treat each space-time point as a distinct parameter. To reduce 
the cost J{(f)), the control 0 is changed by 

old 

where the gradient is related to the derivative of the cost function by 

g = Vcj) 

(9) 

(10) 



so that J decreases along this gradient direction. The differential here is defined in 

Jo   Jo. 

(11) 
2(p - Poo)p' dQ,dt, 

/o   ^n 
where the last line results from our particular cost function 

rT 
J{4>)= I    f (p - Pccf dndt, 

Jo  Jn 
(12) 

which represents the total noise in area fi from time t = Oiot = T, where Q is a subset of space 
5. In practice, Cl is where we want to reduce noise. 

As an example to clarify the procedure, consider a generic term in energy equation used to 
control the flow. Thus the flow equations are 

^f{cl) = F (13) 

with 

F = (14) 

0 
0 
0 

>(x,*)_ 

In this example, the control function 0 is constituted by the list of <^(x, t) at discrete space-time 
points at which an energy "forcing" will be applied. The derivative of flow field is then 

U'{c{) = F' (15) 

with 
0 
0 
0 

L</.'(x,i). 

F' (16) 

We substitute (15) and (7) into (5) to get 

(F',q*) = -(q',F*) + b. (17) 

The boundary conditions and initial conditions of adjoint problem are not pre-defined and there- 
fore can be chosen to eliminate b. Thus the problem can be simplified in our case. A "radiation" 
condition appropriate for our free-space configuration eliminates space boundary terms. The ini- 
tial condition q'|t=o = 0 eliminates terms at i = 0. The components of b at t = T are eliminated 
by selecting q*|t=T = 0. Then it becomes a natural choice to calculate the adjoint field backward 
in time with well-defined zero "initial condition" at f = T. 

Finally, using the corresponding forcing matrices (8) and (16) yields 

(18) /    f p*{x,t)(t>'ix,t)dAdt= f    f 2{p -p^)p'dn dt, 
Jo   Js Jo   Jn 

which provides the gradient vector g as a list of 

g{x,t)=p*{x,t) (19) 

at the same discrete space-time points as in the list 0 with the same order. Therefore, the control 
(f) can be updated by (9) accordingly. 



2.3    Adjoint field boundary conditions 

Specially designed non-reflecting boundary conditions can reduce spurious, nonphysical reflections 
at inflow and outflow boundaries, so that the calculated flow fleld is independent of the location 
of the far-field boundaries.^^ Reflections are also a concern for the adjoint, so we developed the 
non-reflecting boundary conditions for them as well. 

On the far field boundary , viscous effect is negligible when Re > 1 (D* = 0), and there is no 
forcing (F* = 0). With some rearrangement, the governing equations become 
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The remaining viscous terms in □ are now also dropped. Following steps are the same as those 
in regular characteristic analysis. We decompose the matrix A** as 

(S*)-iAlS*, (22) 

where 
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Al = 

u 0 0 0 
0 u 0 0 
0 0 u + a 0 
0 0 0 u — a 

(25) 

We noticed that, the matrix A** has characteristic speeds u, u, u + a, and u — a respectively, 
corresponding to entropy, vorticity and two acoustic waves of adjoint field. Recall that the vari- 
ables without * are from the flow field solution, which indicates that the adjoint field is not only a 
mathematical manipulation, but also a physical "mirror image" of flow field. Thus, we are able to 
understand and interpret informations in adjoint field in terms of physical phenomena. Similarly, 

B** is decomposed as 
(26) B** = (L*)-^A^L 

where 
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According to above decompositions, the propagating directions of the characteristic waves on 
right and left boundaries can be determined by AA and those on top and bottom boundaries 
can be determined by AB- Because the adjoint field is solved backward in time, we keep the 
"incoming" waves and suppress the "outgoing" waves to make the boundary of the adjoint field 
"non-reflecting". 

2.4    Other numerical details 

The radiated acoustic energy of a jet, even one so loud that it might fatigue aircraft components, 
is a tiny fraction of the flow's energy. Specialized numerical methods are therefore required to 
capture the sound.^'^ The flow and sound fields, which are governed by the compressible Navier- 
Stokes equations, are solved numerically in two space dimensions without modeling assumptions 
using a fourth-order Runge-Kutta algorithm for time advancement. For spatial differencing, a 
sixth-order Pade scheme^^ is used in the x (streamwise) direction, and the Dispersion-Relation- 
Preserving (DRP) scheme^^ is used in the y (cross-stream) direction. The explicit DRP scheme 
facilitates decomposition across different processor on a parallel machine. The same schemes are 
used to solve the adjoint equations, also without modeling approximations. 

In flow field calculation, a specialized buffer zone similar to that of Freund^° and non-reflecting 
boundary conditions'^ are used in combination to absorb disturbances as they leave the finite com- 



putational domain. As the non-reflecting boundary is derived in section 2.3, the same boundary 
treatments are applied in adjoint field calculation with a minor change to buffer zone coefficients*. 

For the control update, the Polak-Ribiere variant of the conjugate gradient algorithm is used 
with Brent's line-minimization method.'^-'^ The conjugate gradient algorithm provides the optimal 
direction to change the control, while the line-minimization method determines the depth of each 
change. Each line-minimization includes about 10 evaluations of the cost function J or the 
derivative of J. One entire line-minimization procedure, which accomplishes the step along one 
conjugate gradient, is counted as one iteration. 
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Figure 2: Run time scaling of parallel code running on the IBM SP. 

The code has been parallelized using MPI. In the direction that is distributed onto separate 
processors, the explicit Dispersion-Relation-Preserving (DRP) scheme'^^ was used. Run time 
scaling of the parallel code on an IBM SP is shown in figure 2. The run time decreases linearly as 
more processors are used. This good scalability guarantees the efficiency of our code in dealing 
with computationally large-size problems. 

* Damping term in a time forward procedure appears typically as 

dv 

where cr > 0, to provide solution 
y = exp[-crt] 

decreasing as time going forward. But for a time backward procedure, we need the damping term to be 

dt 
+cTy. 

so that the solution 

will decrease as time going backward. 

y = exp[(Tt] 



3    Anti-sound cancellation 

Anti-sound cancellation is a sound reduction method by using other sound sources to reduce the 
sound in a certain area by linear interference. As with any interference phenomena, while sound 
in some area is reduced, sound in some other area will be increased. Anti-sound controllability 
decreases rapidly as the control area becomes larger than the wave length of sound. We demon- 
strated and tested the control system on anti-sound, but it is not an appropriate sohition to the 
jet noise problem. 

Q. 

Uniform Flow 

Noise Source 

Control Region 

/ 

Figure 3: Anti-sound demonstration schematic. 

The test configuration is illustrated in figure 3. A noise source represented by a mass source 
term 

fix, t) = 0.1 exp[-{(x/L + 3)2 + {y/Lf}] cos(7riaoo/L) (30) 

sits in a mean flow with Mach number 0.5 and Reynolds number 100, where Ooo is the sound speed 
at infinity and L is the characteristic length defined by the scale of the mass source distribution. 
Our objective is to minimize the noise defined by the cost function J in (12) on the vertical target 
line 0 at a; = 0 and —8 < y/L < 8. The control is a mass source with support in C with dimension 
1 < x/L < 5 and —2 < y/L < 2. Though it is a simple acoustic problem, full compressible viscous 
flow and its adjoint are solved in this test. 

After 3 iterations, the sound on Cl is greatly reduced. The sound fields with and without 
control are compared in figure 4. Obvious sound reduction can be observed along the target line 
at a; = 0. 
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Figure 4: Comparison of sound fields (a) without control (b) with control. Blue and red shades 
indicate noisy area, while green shade indicates quiet area. 

A quantitative result in figure 5 shows 95% sound reduction in terms of the cost J. 
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Figure 5: The reduction of sound in anti-sound problem. 

4    Suppression of noise from a model jet 

4.1    Formulation 

A two-dimensional mixing layer is studied as a model of the near-nozzle region of jet. The mixing 
layer simulated is shown schematically in figure 6. The Reynolds number is Re,^ = 500, based on 
vorticity thickness, 

^^      ^ (31) 

The Mach numbers of the top and bottom streams are Mi = 0.8 and M2 = 0, respectively. The 
inflow temperature is uniform. 
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Figure 6: Mixing layer control schematic. 

The black line f) in figure 6 at j/ = —AOSu, and extending between x = lOSu^ and x = 405^^ is 
our target line, where the noise will be reduced. Our initial objective is to establish the optimum 
that can be achieved in terms of noise reduction. For this reason, we have optimized a completely- 
generic forcing. Sources are added to the flow equations as described in section 2.2 (14) in a small 
region demarked by a box C, x/S^j G (1)5) and y/S^j G (—2,2), also shown in the figure. Each 
space-time point of a discrete representation of the forcing is optimized independently. Since the 
control is turned on for time period 2005u/aoo in this region, we optimized in total about 3 million 
space-time points. 

4.2    Flow simulation and its control 

Instability theory predicts that the most unstable mode of the incompressible mixing layer has 
Strouhal number St = ^jf^ = 0.032,^^'^"^ where / is the excitation frequency, 5m is the momentum 
thickness, and Uc is the convection speed. This unstable mode provides an estimation of the 
fundamental frequency of our compressible mixing layer, since this frequency is not very sensitive 
to the present compressibility level.'*'^''*^  Therefor the fundamental frequency to excite our flow 
is /o = St Uc Numerical experimentation confirms that the mixing layer does respond strongly 
to forcing at or near this frequency. To provide a richer flow for our scheme to control, we excite 
the flow at a total of eight frequencies, /o/4, /o/2, 3/o/4, /o, 5/o/4, 3/o/2, 7/o/4, and 2/o. These 
were selected in an ad hoc fashion for now. A more thorough investigation of the effects of this 
excitation on the noise and its controllability is underway. 

To minimize the direct effect of the excitation on the sound fleld, we define a function ip with 
the 8 frequencies fi listed above as 

8 

V' = Vo e-'^-(-^-"°)'e-'^^(^-^°)' J2sm[27r/i(x - xo - M^t) + Pi] sin[27r/i(y - j/o) -t- /3;],       (32) 

where tpo is the amplitude, {xo,yo) is (—5(5^^,0), both ax and ay are 0.2, Px,y are initial random 
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phases, and Mc = 5 (Mi + M2). The excitation, which appears as body force, is then defined as 

dy' 
F   =-^ 

dx' 
(33) 

so that it is solenoidal and therefore relatively quiet. We observed no sound directly from this 
excitation. The amplitude of each mode was ^0 = Q.0MpooO?^/5^. Our selection of XQ and yo puts 
the excitation upstream of the physically realistic portion of the computation. Our controller, of 
course, has no direct knowledge of this excitation. 

The flow was simulated for time 400(5(j/aoo to allow initial transients to decay and wash out. 
Then the controller was applied during the following 2005tj/aoo. 

4.3    Results and analyses 

4.3.1    Noise Reduction 

-20 

-40 
■ ' ■■■■.■■■ 

(b) 
0        20       40       60 

x/5tj 

Figure 7: Comparison of the flow and sound field (a) without control (b) with control. Blue and 
red shades indicate noisy area with Ip'/Pool up to 0.003 (blue is negative and red is positive), while 
green shade indicates quiet area. Contours show vorticity magnitude with peak 0.7aoo/Su- 

Figure 7 (a) shows the instantaneous flow field before control with contours of vorticity and sound 
field with color indicating pressure level. The corresponding controlled case after 7 iterations is 
shown in figure 7 (b) at the same time instance. The noise is clearly reduced along the target 
fine. 
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Figure 8: The reduction of the cost. 

More quantitatively, figure 8 shows a 77% reduction (6.3dB) of cost function 

^(0)= /    f{p-Pocfdndt. 
Jtn   Jci 

(34) 

The starting point to in the cost function is chosen to be the time for sound to travel from control 
region C to the closest point on Q, assuming it propagates at the sound speed. Before this time, 
noise on the target line is not controllable. Even after io) the sound on fl is not fully controllable 
for two reasons: (1) the control reaches the closest point but not the farther points and (2) the 
rate at which the effect of the control travels is slower than sound speed. In the mixing layer it 
is the structure convective Mach number, Mc ~ 0.4. An overlapping-time control method^^ will 
remedy this. This will make the cost J, as we compute it, decrease more, though we have already 
achieved the piecewise (in time) maximum reduction at later times. 

It is important to verify that by reducing the sound in a particular direction we have not made 
it unacceptably louder in other directions. To see if the radiation increases elsewhere, we compare 
the cost with and without control on other lines besides the target line. As shown in figure 9, 
other costs have not changed much and some other directions are also quieter. 

13 



40 

20- 

^3 

-20 

-40- 

QA 

H^xCJ>-^ 

f^l 

'I'll 

20 

Os 

^2 

40 60 

Figure 9: Cost value Jaoo/vio^t without and with control on different lines: Qi (target line 
Q): 0.0199 (without control) =^ 0.00465 (with control); O2: 0.0746 =» 0.0574; Q3: 0.1065 => 
0.0781; ^4: 0.0394 ==^ 0.0415. 

4.3.2    Adjoint Field 

^^ 
5i 

-20 

(a)    0        20       40       60 (b)   0        20       40       60 (c)    0        20       40       60 

x/5^ 

Figure 10: Adjoint pressure: (a) t — 1955t^/aoo, (b) t = 150(5j^/aoo, (c) t = 1205^/aoo, (d) 
t = 7b5uj/aoo- The time goes backward in the adjoint solution. 

To better understand the control process, the evolution of the adjoint pressure p* is shown in 
figure 10. It is this quantity that provides the gradient information g to update control equation 
(9). Since the flow equations are self-adjoint in the acoustic limit, the adjoint pressure is initially 
an adjoint sound wave, excited along the target line by the cost. As this wave encounters the 
mixing layer, it excites instability waves, which move upstream in the mixing layer to the control 
region. Finally, the gradient information is recorded inside this region. It is the instability waves 
in the adjoint that dominates the gradient, which suggests that the control mechanism is via the 
instabilities in the mixing layer. 
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Given this qualitative behavior of the adjoint, the mechanism of noise control can be expressed 
as follows. The control interacts with the flow. This excitation alters (slightly, we shall see) the 
instabilities in the flow. The modified flow field is quieter. This interpretation will be strengthened 
in the following sections. 

4.3.3    Is It Anti-sound? 

In section 3, we declared that anti-sound mechanism will not be used in jet noise control. For the 
same reason, anti-sound should not be the control mechanism in the mixing layer sound reduction 
either. That adjoint instability waves dominate the gradient information in C suggests that the 
control mechanism is linked to the hydrodynamics. This assertion is discussed and supported 
more quantitatively in this section. 

200 

tSoj/aoo 

Figure 11: Pressin-e fluctuation changes at x = 255^^, y = —405i^ 
with control. 

without control; 

Shown in figure 11, we record the pressure fluctuation history on a choosing point, x = 255(^ 
and y = —405(j on 0. The vertical blue line indicates the moment when the first sound wave 
from the control box would (and does) arrive. In these initial simulations the control is started 
impulsively causing the jagged burst we see. If the mechanism were anti-sound, the noise reduction 
should appear just after this point. However, the apparent control of the noise happens after a 
time delay due to the slower instability wave speed. The vertical black shaded bar shows the 
approximate time for a flow structure to convect to x = 255^^ at Mc ~ 0.4, which is observed for 
this mixing layer (see figure 18), and then for sound to radiate from y = 0 to the Q, at y — —AOS^. 
This is when the control does indeed appear to take efl^ect. 
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Figure 12: Anti-sound control test schematic. 

To further demonstrate that our control is not by anti-sound, we designed the numerical 
experiment shown in figure 12. The control is moved to the region xjS^^ G (1,5) and yjbi^ G 
(-20,-16), away from the shear layer. The adjoint instability wave never reaches this control 
region, only acoustic waves do, so control is principally by acoustic cancellation—anti-sound. After 
7 iterations, a 45% reduction is observed (figure 13), which is not surprising because anti-sound 
is known to be effective locally. 

12      3       4       5       6 

Iteration number 

Figure 13: The cost reduction comparison: A "near-nozzle" control; anti-sound control. 

However, anti-sound is also known to reinforce the sound elsewhere. So we again check other 
directions. Unlike the previous case, some of the costs increase substantially. The cost value 
Jaoo/vlo^l changes on different lines (refer to figure 9) as: fii: 0.0199 =4- 0.0109 (down 45%); 
fig: 0.0746 =^ 0.0899 (up 21%); ^3: 0.1065 =^ 0.1010 (down 5%); ^4: 0.0394 =^ 0.0539 (up 
37%). 
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4.3.4    Control Forcing 

For the effective flow control (not anti-sound) case, it is interesting to see what the forcing does 
to the flow. Snapshots of the optimal control forcing in flgure 14 give us a picture of the evolution 
of the control at different times. In the control box, the forcing is distributed in a non-intuitive 
manner. The individual "structures" in the control (p{x,y) moves at a speed between 0.7Uc and 
1.7Uc, where Uc is the anticipated structure convection velocity, which is close to the expected 
convective speed Uc, but little else can be understood via visualizations. Our ongoing effort will 
study the control and identify its essential components that reduce the noise. 
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Figure 14: Control forcing: (a) t = 0, (h) t = 55u,/aoo, (c) t = lOS^^/aoo, 
(e) t = 205^/aoo, (f) t = 255^/aoo, (g) t = 305^/a^, (h) t = 355^/aoo, (i; 
t = 455<j/aoo, (k) t = 50S^/aoo, (1) t = 555^/aoo, (m) t = 60(5a;/aoo, (n) 
t = 705a;/aoo, (p) ^ = 755^/aoo, (q) i = 80S^/aoo, (r) i = 855^/aoo, (s) 
t = 95(5(^/aoo. Black indicates the positive forcing (> O.Olpooa^/Su), and 
negative forcing (< O.Olpoo'i^/^ai)- 

(d) t = 15S^/aoo, 
t = 4Qduj/aoo, (j) 

t = 655i^/aoo, (o) 
t = 905^/aoo, (t) 
gray indicates the 
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In an attempt to develop a quantitative description of the action of the forcing, we define 
integrals over the control region to study the net influence on the flow: 

Q{t) = jq{x,t) dC. (35) 

Figure 15 shows the history of the net energy, velocity and control forcing in the control region. 
We see no correlation between the forcing and integrated flow variables in the control region. We 
anticipate that there must be some correlation, but more data is needed to study its statistics if 
it is at all possible. The flat part (160 < tooo/^w < 200) at the end of the forcing history is caused 
by the time delay between the control and the target. Control in that flat piece would not alter 
J on the target line vatQ <t <T. 

0.01 I 

-0.01 \- 

Total Energy 

002FX Velocity 
0.01 i- 

'  

100 150 200 

Figure 15: History of integrals inside the control region. 

4.3.5    Effect of control on the flow^ Held 

Despite the large decrease in the radiated sound, the mixing layer flow is changed surprising Httle 
by the control. Figure 16 shows the spreading of its momentum thickness. 

-L +^ p{u-Ui){U2-u} 

PocAm 
dy. (36) 

We see that the control changes its downstream evolution only slightly. The waviness of the 
profiles is believed to be due to the limited statistical sample in the simulation time T, but might 
also be due to the nature of the paring which is known to cause jumps in thickness. 
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Figure 16: Change of the momentum thickness of the mean flow: ■ 
with control. 

The turbulence kinetic energy, defined as 

without control; 

where v! and v' are velocity fluctuations, is also nearly unchanged. Figure 17 shows 

K. k dy 

and 

K.iiv) =  I        kdx 
JO 

(37) 

(38) 

(39) 

with and without control. The noise reduction is clearly not due to turbulence suppression. 

1.6 

1.2 

^3   0.8 

0.4 

(a)     %     10    20    30    40    50    60 (b)     %0       -25 0 25        50 

x/5uj y/5^ 

Figure 17: Comparison of integrated turbulence kinetic energy as defined in (a) equation (38) and 
(b) equation (39): case without control   ; case with control . 
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200 200 

Figure 18: Pressure at y = 0 shows little change in large-scale structural evolution without (a) 
and with (b) control. Black is {p — Poo) < 0; white is (p — Poo) > 0. 

The way in which the energetic structures are arranged has also changed little. Figure 18 
shows the time evolution of the large structures, as demarked by pressure, at y = 0 with and 
without control. Small changes in the structural evolution are apparent, but the gross features 
are indistinguishable. For example, the pairing structures, which we see as the joining of the dark 
regions, are nearly indistinguishable before and after the control is applied. 

4.4    Body force control 

The control shown above to quiet the noise appears as an energy term (14). However, real active 
controls, such as synthetic jets, apply the effects on flows primarily by momentum changes. To 
make our work more practical, we assume a j/-direction body force applying in the same control 
box C. Also shown in figure 19, the target line extends to between a; = 0 and x = 60(5^^. The 
control time extends from 2005(j to 400(5cj, the Mach numbers are changed to Mi = 0.9 and 
M2 = 0.2, and other parameters and geometries are the same. 
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Figure 19: Mixing layer control schematic. 

The mathematics associated with body force control are a little more complex than for the 
energy force control. The terms are added in both y-momentum equation and total energy 
equation 

^     0 
0 

</)(x,t) 
(40) 

Therefore, the derivative becomes 

F' 

0 
0 

v(f)'{x,t) + v'(f){-x,t) 

(41) 

By integration by part, one extra term appears in adjoint equations (7) as 

A/'*(q*)+E* = F*, 

where 

E* 

0 
0 

p*<^(x,i) 
0 

(42) 

(43) 

Solving this modified adjoint equations, we get the gradient vector g for body force control as a 
list of 

g{x, t) = v*{x, t) + v{x, i)p*(x, t) (44) 

at the same discrete space-time points with the same order. 
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The visual comparison of flow and sound field with and without control is in figure 20, which 
shows clearly sound reduction on the target line. 

Figure 20: Comparison of the flow and sound field (a) without control (b) with control. Blue 
and red shades indicate noisy area with |P7POO| up to 0.003 (blue is negative and red is positive), 
while green shade indicates quiet area. Contours show vorticity magnitude with peak 0.7aoo/5w 

Figure 21 shows the quantitative result that 73% reduction (5.7dB) of cost function is obtained 
after 7 iterations. 
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Figure 21: The reduction of the cost. 

4.5    Summary 

An adjoint-based approach has been developed to control the noise radiated from a two-dimensional 
mixing layer. The noise along a specified line in the far-field was reduced substantially by both 
energy and body force controls. 

The changes of the flow field due to the control forcing are relatively minor, which is possible 
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because only a small fraction of the flow's energy, that with a supersonic phase velocity, radiates. 
Our simulations indicate that, at least in a two-dimensional mixing layer, this part can be altered 
to dramatically reduce the noise. 

The control forcing itself is non-intuitive and the correlations between it and other flow prop- 
erties are not yet clear. Work continues identifying practical control laws and understanding the 
details of how the present control works. 

5    Iteration-based immersed boundary 

It has been observed in trial-and-error experiments-^^ that jet noise can be reduced a little by 
modifying the shape of engine nozzle with minor thrust loss. Finding an optimal nozzle shape 
under certain constraints is a long-term objective of our simulations. During the optimization 
process, the boundary defined by the nozzle is being changed and with irregular shape. In antic- 
ipation of this, we developed an iteration-based immersed boundary to treat complex geometries 
with little added computational complexity. 

The immersed boundary method is an ideal choice to this type of boundaries.^^^*^ Because 
the physical boundary is not always on grid points, interpolation, extrapolation, and distribution 
functions are used to define the physical boundary which is not necessarily on the mesh. Some 
other methods, such as adaptive mesh reflnement,^^ has made good progress in increasing the 
accuracy, but at the cost of simplicity. The complexity can also carry a significant computational 
expense. In acoustics problem, the above computational diflficulties are enhanced, because the 
acoustic energy is only a small fraction of the whole flow energy. 

Figure 22: Acoustic reflection problem schematic. 

A model problem is used to demonstrate this new method. Figure 22 shows plane acoustic 
waves traveling from the left to the right and scattering from a circular cylinder. The governing 
equations are linearized Euler equations, 

dp     dux     du 

dt      dx       dy 
dux     dp 

y    _ 0 

dt      dx ■"' 
duy     dp   _ 

dt  '^ dy    ~   ^^ 

(45) 

(46) 

(47) 

(48) 

where fx and fy on the right-hand-side are the body force terms to represent the immersed 
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boundary. The general form of those body forces is given by 

,         ?    ^       ^target - Un       dp 
/„^f.n=  + -,        ^target = 0, 

where utarget is chosen to be 0 to satisfy the physical non-penetrated boundary condition. 

h 

(49) 

e i> 
>^i+i 

-(> 

Jib 

>1_ 
1-1 '^ 

<) e> 

<)- 

^ ^ 

i-1 i 

J+1 

J-1 

~^_ 

i+1 

Figure 23: Schematic of immersed boundary (blue line) and grid system: red crosses mark bound- 
ary points. 

Because the values of flow variables are computed on the mesh points and the immersed 
boundary is generally off mesh (figure 23), interpolation is need to transfer data between two grid 
systems. Our method combines a simple iteration method with the immersed boundary method 
developed by Mohd-Yusof."^* The procedure is: 

1. Distribute flow variables G to boundary points with distribution function Pfor 

AT 

G/ =   ^ GijPior{y^i,j - X/)/i2,       l = l,...,Nb. (50) 

2. Calculate body force on boimdary points: /; = /(G;). 

3. Distribute body force back to grid points with distribution function Pback 

Uj = / ,f/-Pback(Xtj - X/)/lb. (51) 

1=1 

4. Estimate G*^ at next time step. 

5. Distribute G<^ to boundary points. 

6. Correct force 

7. Get a new force term 

8. Repeat until convergence. 

re _ ^target       ^n „ _ r, 
Jn -  ^^ '        ^target - U. (52) 

(53) 
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24. 
This new iteration-based immersed boundary shows much better resolutions as shown in figure 

Numerical (with iteration) Numerical (without iteration) 

U^%\ \\ 

Exact 

Figure 24: Comparison of the results by immersed boundary methods(with and w/o iteration) 
with exact solution. Contour shows the reflection waves. 

This improvement is shown quantitatively in figure 25 by checking the contour value on a line 
marked in figure 24 (exact solution picture). 
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Figure 25: Contour vahies on marked line. 

The accuracy of this method was confirmed to be 2nd order (figure 26). 
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Figure 26: Algorithm accuracy. 

As we mentioned before, the computational cost of this iteration-based immersed boundary 
process is negligible compared to the flow field calculations. 

6    Discussion 

A adjoint-based noise control method has been developed. The successful use of this method 
on a model jet is a novel means of exploring noise control mechanism and eventually provide a 
practical control in the real jet flow. Some ongoing work is: 

• Simulations in a larger space domain and longer time. To generalize our results to "far- 
field" , we need to show the results are insensitive to the domain size. We also need a longer 
simulation time, the entire controlling process, to reach statistics. 

• Three-dimensional simulations. It is a natural extent of present work. Of course, it will be 
more expensive to do iterations in three dimensional simulations. 

• Nozzle optimization. All our works were focused on active control till now. We have known 
from trial-and-error experiments that nozzle modification can passively reduce the jet noise, 
although there is no conclusion how efficient it can eventually be. The combination of 
present adjoint-based optimization and immersed boundary technique will make the auto- 
matic nozzle optimization possible. 
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Optimal Control of Free Shear Flow Noise 

M. Wei* and J. B. Preund^ 
Theoretical and Applied Mechanics 

University of Illinois at Urbana- Champaign 
Urhana, Illinois 61801 

Efforts to diagnose and control aerodynamic noise from turbulent flows have been 
hampered by a lack of the necessary computational fidelity and practical simulation pro- 
cedures to use in place of expensive trial-and-error experiments. Recent direct numerical 
simulations of jet noise^ provide a detailed look at the mechanisms, but have not yet 
shown a clear path to follow that will reduce noise. In this paper we introduce a method 
that uses the full flow fleld information of such a simulation in an automated fEishion in 
conjunction with solutions of the adjoint of the flow equations to reduce noise. We demon- 
strate this method on a convective Mach number Mc = 0.4, Reynolds number fie„ = 500 
two-dimensional mixing layer. For now, the actuation is right-hand-side forcing of the 
Navier-Stokes equations restricted to a small control region near the splitter plate. After 
7 conjugate gradient iterations, noise is reduced by 6.3dB. The optimal forcing identified 
is weak, and has a nearly imperceptable effect on the structures in the mixing layer. 

Nomenclature 

a Sound speed 
C Control region 
e Total energy 
/e Bodyforce to excite instability 
g Gradient for control update 
M Mach number 
Mc Convective Mach number = ^'^~'^^' 
p Pressure 
R.e^ Reynolds number = ^ "^ ^~ ^' 
St Strouhal number -^ 

"CO 

t Time 
w, V Velocity in x and y 
Ui Speed of upper flow 
U2 Speed of lower flow 
X, y Cartesian coordinates 
a Line search parameter for control update 
6u Vorticity thickness 
fi Viscosity coefficient 
p Density 
(p Control 
n Noise reduction line (target line) 

Accents/Subscripts/Superscripts 

0 Time average 
00 Ambient 
/ Perturbation from mean 
k Iteration # 
* Adjoint variables 
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Introduction 
NOISE continues to be a pressing problem in the 

aircraft industry, with a substantial competitive 
advantage going to makers of planes and engines that 
can satisfy the ever more restrictive airport noise reg- 
ulations. Even with modern high-bypass engines, jet 
noise remains a significant component of the overall 
noise from an aircraft, especially during takeoff, and 
must be reduced for future aircraft to meet anticipated 
regulations. 

The development of controls is hampered by insuffi- 
cient understanding of the mechanism of aerodynamic 
noise generation by turbulence. Most attempts to opti- 
mize the nozzle shape to reduce the jet noise are based 
on trial-error experimentation.^ This approach is ex- 
pensive. The results are confusing and do not give a 
clear explanation of why a particular design is prefer- 
able to others. Often procedures that reduce overall 
sound pressure level end up increasing net annoyance 
by increasing the high-frequency components of the 
noise.^ Procedures that work on models do not always 
work on full-scale engines. 

The root difficulty is that noise generation, espe- 
cially in subsonic free shear ffows, is a subtle process 
with only a tiny amount of the flow's energy escaping 
to radiate as noise. With the availability of high-speed 
computers and advanced numerical methods, it has re- 
cently become possible to compute aerodynamic noise 
from flrst principles by solving the compressible flow 
equations without modeling approximations.-^ Two- 
dimensional mixing layers,"^ axisymmetric jets,^ and 
supersonic^ and subsonic^ three-dimensional turbulent 
jets have been computed in this way. These simula- 
tions have provided insight into the mechanism but 
as yet have not pointed the direction for controlling 
noise,''' which is the principal objective of this paper. 

Typically, control problems approach their optimum 
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iteratively based on sensitivity analysis of control pa- 
rameters. In this case, we are concerned with sen- 
sitivity of the noise to changes at the nozzle. This 
information is needed in order to be able to adjust con- 
trols appropriately to reduce noise. A direct method 
to identify sensitivities is expensive: its cost is propor- 
tional to the number of control parameters, which is 
excessive if there many. Optimizing a time profile for 
forcing by necessity requires many parameters. This 
is prohibitive in experiments because most hardware 
lacks flexibility to fully examine the parameter space. 
Though in principle they offer greater flexibility, sim- 
ulations with the necessary fldelity are currently far 
too slow to take this brute force approach. How- 
ever, the adjoint method provides the full sensitivity 
information linearized about a particular flow by solv- 
ing a single adjoint (inverse) system. Thus, its cost 
is independent of the number of control parameters.^ 
In fluid mechanics applications, adjoint methods have 
been used successfully in shape optimization®"^" and 
turbulence drag reduction.-^^ Similar methods have 
been used to study and account for mean flow refrac- 
tion effects on sound radiated by localized sources in 
jets 12 

Our approach is shown schematically in flgure 1. 
Given a numerical solution of the compressible flow 
equations, the adjoint of these equations with coeffi- 
cients that depend on the flow solution is solved back- 
ward in time to give the sensitivity of the noise, which 
is defined quantitatively by an appropriate metric, to 
changes in the control at the nozzle. This sensitivity 
is used to update controls to reduce noise. At present 
the approach depends on the full flow fleld informa- 
tion of flow simulation, and so is impractical for direct 
use in most engineering applications. However, our re- 
sults will be useful in several ways. The controlled case 
will be analyzed to develop general laws to guide fu- 
ture experiments and designs and to achieve a deeper 
understanding of what remains a poorly understood 
mechanism. These simulations also provide, in some 
sense, an upper limit for what can be accomplished 
reducing noise with active control. 

Noise 

DNS Solution 

Sensitivity 
to Control 

Fig. 1     Schematic of the adjoint-based procedure 
for determining control sensitivity. 

Formulation 

The present study focuses on a two-dimensional 
mixing layer, which is a near-nozzle model of a jet. 
There is no indication that any particular change is 
needed to use present methodology to control a more 
general three-dimensional turbulent flow. 

Our mixing layer system is shown in figure 2. The 
Reynolds number is Re^ = 500, defined by vorticity 
thickness 5^^, the Mach numbers of the top and bottom 
streams are M = 0.8 and M = 0, and the temperature 
is uniform. 

40 

K? 
si 

20 -   Control Region 

: / M = 0.8 

-20 

-40 

M = 0.0 

make quiet along 
this line — 0 

20 40 

x/5u 

60 

Fig. 2    Mixing layer control schematic. 

Our control objective is to reduce the noise along 
the target line U a.t y = —405;^ between x = 105^ 
and X = 405(^. To achieve this, we apply the control 
(f>, which is a generic forcing term added to the right- 
hand-side of the Navier-Stokes equations in a small 
control region C, x/S^ € (1,5) and y/5,^ G (—2,2), 
also shown in figure 2. 

We define the cost functional to be minimized as 

Jto    Jo. 
(1) 

where p is the instantaneous pressure, Poo is the ambi- 
ent pressure, and to and ti are the beginning and end 
of the times to be made quiet. To determine the sensi- 
tivity of J to small modifications of the control 4), we 
consider a small perturbation J' to the cost functional 
J resulting from an arbitrary perturbation (f) to the 
control (j)}^ J' is defined as the Prechet differential of 
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the cost functional J as 

= lim 
e->0 

J{4> + e4>')-J{<^) 
£ 

(Kldt. 

(2) 

The gradient g to update the control is determined 
directly from a solution of the adjoint system, forced 
by J, using a well-documented procedure.^-' Control 
is updated as 

0' fc+i 
<!>' «V, (3) 

where a!^ is a line-search parameter determining the 
change along direction g'" for the fc"' iteration. 

Computational Methods 
For the flow and sound fields, the compressible 

Navier-Stokes equations are solved without modeling 
assumptions. 

To excite the mixing layer, we apply a bodyforcc 
with peak level /e « 0.005pooa^/(^w at the inflow. 
This force has 8 frequencies between St = 0.0257r 
and St = 0.27r, to simulate natural disturbances with 
a wide spectrum. Our controller, of course, has no 
knowledge of this excitement forcing. 

A fourth-order Runge-Kutta algorithm is used for 
time advancement, and a sixth-order Pade scheme^^ 
is used for spatial differencing. A specialized buffer 
zone similar to that of Freund^'' and a more tradi- 
tional non-reflecting boundary condition^^ are used in 
combination to absorb disturbances as they leave the 
finite computational domain. The same schemes are 
used to solve the adjoint equations. 

For the control update, the Polak-Ribiere variant of 
the conjugate gradient algorithm is used with Brent's 
line-minimization method. ^^ 

Some of the results in this paper were computed 
on parallel machines using MPI. In this case, the 
Dispersion-Relation-Preserving (DRP) scheme^''' was 
used in y. 

Results and Analysis 
Noise Reduction 

Figure 3 (a) shows the instantaneous flow and sound 
field of the uncontrolled mixing layer with contours 
of vorticity to show the flow structure. The corre- 
sponding controlled case after 7 iterations is shown in 
figure 3 (b) at the same time. The noise is clearly re- 
duced along the target line. More quantitatively figure 
4 shows a 77% reduction of cost functional, which is 
about 6.3dB. At present, the starting point to in the 
cost functional is chosen to be the time for sound to 
travel from control region C to the closest point on 

Fig. 3 Comparison of (a) without control (b) 
with control flow and sound field. Solid black is 
b'/Pool > 0.003. Contours show vorticity magnitude 
with peak 0.78aoo/Su,- 

n. Before this time, noise on the target line is not 
controllable. Even after io, within some period the 
target line is not under full control by two reasons: 
(1) the control reaches the closest point but not the 
farther points; (2) the rate at which the effect of the 
control travels is slower than sound speed—in the mix- 
ing layer it is the structure convective Mach number, 
Mc ~ 0.4. An overlapping-time control method^^ will 
remedy this. This will make the cost J, as we com- 
pute it, decrease more, though we might have already 
achieved the piecewise (in time) maximum reduction 
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Fig. 4    The reduction of the cost. 

at later times. 
To measure the strength of the forcing, which for 

now only appears in the energy equation, we calculate 
the integral of the total energy (internal energy plus 
kinetic energy) in that region. 

E{t)=  f e{x,t)dC, (4) 

with and without control. The small energy input is 
indicated by the minor changes in figure 5. Since C is 
itself a small area, it is clear that very little energy is 
added. 

IN 3 

tiq 

"0 50 150 200 100 

Fig. 5    Integral of the energy in the control region 
C:    without control; with control. 

To see if the radiation increases elsewhere, we com- 
pare the cost with and without control on other lines 
besides the target line. As shown in figure 6, other 
costs have not changed much and some other direc- 
tions are also quieter. 

Adjoint Field 

To better understand the control process, the evolu- 
tion of the adjoint pressure p* is shown in figure 7. It 
is this quantity that gives the gradient information g. 
Since the flow equations are self-adjoint in the acoustic 
limit, the adjoint pressure is initially an adjoint sound 
wave, excited along the target line by the difference 

^3 
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40 
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Fig. 6 Cost value Jaaa/pio^t without and with 
control on different lines: Hi (target line f2): 0.0199 
(without control)  =4> 0.00465  (with control);   Oa: 
0.0746 => 0.0574; fia: 0.1065 =J> 0.0781; 04: 0.0394 =^ 
0.0415. 

between the cost and the cost expectation. As this 
wave encounters the mixing layer, it excites instability 
waves, which move upstream in the mixing layer to 
the control region. Finally, the gradient information is 
recorded inside this region. It is the instability waves 
in the adjoint that dominates the gradient. 

Given this qualitative behavior of the adjoint, the 
mechanism of noise control can be expressed as follows. 
The control interacts with the flow. This excitation al- 
ters (slightly, we shall see) the instabilities in the flow. 
The modified flow field is quieter. We are working to 
quantify the precise mechanism. 

Is It Anti-sound? 

That adjoint instability waves dominate the gradi- 
ent information suggests that the control mechanism is 
not anti-sound. This is supported more quantitatively 
here. Choosing the point, x = 255^ and y = —405;^ 
on n, we record the pressure fluctuation history in fig- 
ure 8. The vertical line indicates the moment when 
the first sound wave from the control box would (and 
does) arrive. In these initial simulations the control 
is started impulsively causing the jagged burst we see. 
If the mechanism were anti-sound, the noise reduction 
should appear just after this point. However, the ap- 
parent control of the noise happens after a time delay 
due to the slower instability wave speed. The verti- 
cal shaded belt shows the approximate time for a flow 
structure to convect to a; = 25^1^ at Mc « 0.4, which is 
observed for this mixing layer (see flgure 11), and then 
for sound to radiate from y = D to the 0 at y = —4QS^. 
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Fig. 7     Adjoint pressure:   (a) t = 195,  (b) t = 150,  (c) t = 75.   The time goes backward in the adjoint 
solution. 

This is, of course, a crude estimate of the time for con- 
trol to take effect. Further investigation is underway. 

0.006 

40 

20 

^ 

200 

Fig. 8 Pressure fluctuation changes at a; = 255^, 
y = -405u,:   without control; with con- 
trol. 

Furthermore, we designed a numerical experiment 
shown in figure 9. The control is moved to the region 
x/Sui e (1,5) and y/6uj € (-20,-16) away from the 
main flow area. Now the adjoint instability wave never 
reaches this control region, so control is principally by 
acoustic cancellation—anti-sound. After 7 iterations, 
only 45% reduction is observed (figure 10). 

As a comparison, we check the radiation increase 
elsewhere for this anti-sound case too. Unlike the 
previous case, some of the costs increase substan- 
tially. The cost value Jaoo/vio^t changes on different 
lines (refer to figure 6) as: Oi: 0.0199 =^ 0.0109; 
Os:   0.0746 ==^ 0.0899; Os:   0.1065 =^ 0.1010; UA: 

-20° 

-40- 

Control Region 

20 40 60 

x/5^ 
Fig. 9    Anti-sound control test schematic. 

0.0394 0.0539. 

Flow Field Changes 

A remarkable result is that the large-scale structural 
evolution has changed little between noisy and quieted 
cases. Figure 11 shows the time evolutions of large 
structures, as demarked by pressure, at y/S^^ = 0 with 
and without control. Small changes in the structural 
evolution are apparent, but the gross features are in- 
distinguishable. For example, the pairing structures, 
which we see as the joining of the dark regions, in both 
pictures keep almost the same size and angle. 
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Fig. 10    The cost reduction comparison: A "near- 
nozzle" control; D anti-sound control. 
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Fig.  11 Pre ssure at 2/ = 0 shows little change 
in large-scale structural evolution without (a) and 
with (b) control. Black is p' < 0; white is p' > 0. 

The turbulence kinetic "energy," defined as 

fc=^[K)'+Kn, (5) 

where v! and v' are fluctuation of velocities, is also 
nearly unchanged. Figure 12 shows 

/50(5„ 

■50i5„ 

kdy (6) 

r60(5„ 

Ky{y) = / 
Jo 

kdx (7) 

with and without control. The noise reduction is not 
obtained through turbulence suppression. 

^ 

(a) 

1.6 

1.2 

0.8 

0.4 

(b)     950 ' ' -25 0 25 50 

Fig. 12 Comparison of integrated turbulence ki- 
netic energy as defined in (a) equation (6) and (b) 
equation (7). The lines indicate the case without 
control    and the case with control . 

Conclusions 
Using an adjoint-based control techniques, we re- 

duced two-dimensional mixing layer noise by 6.3dB 
with little change to the apparent structural dynam- 
ics. This is possible because only a small fraction of 
the flow's energy, that with a supersonic phase veloc- 
ity, radiates. Our simulations indicate that, at least 
in a two-dimensional mixing layer, this part can be al- 
tered with minimal control authority to dramatically 
reduce the noise. 

Work continues identifying practical control laws 
and understanding the details of how the present con- 
trol works. 
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Noise Control Using Adjoint-based Optimization 

M.Wei* and J.B.Freund^ 
Theoretical and Applied Mechanics 

University of Illinois at Urbana-Champaign 
Urbana, Illinois 61801 

Attempts to control the jet noise have been hampered by an insufficent understanding of its mechanisms, 
resulting in a reliance on trial-and-error experimentation to reduce noise. This paper aims to explore the noise 
mechanism using adjoint-based noise control in conjunction with a direct numerical simulation. A control prob- 
lem is formulated with the objective of reducing acoustic intensity on a line in the sound field. The cost function 
that quantifies this is used to force the adjoint of the compressible flow equation, which are solved numeri- 
cally in the same way we solve the flow equations. The adjoint variables provide the sensitivity of the noise, 
as we have specifically defined it, to changes in actuation. Using this approach, the noise radiated from a two- 
dimensional mixing layer with convective Mach number Mc = 0.4 and Reynolds number based on vorticity 
thickness Rca, = 500 was reduced by 6.3dB. This flow is a model of the near nozzle region of a jet and general- 
ization of the technique to a jet is straightforward. Despite the substantial reduction in the noise, the changes of 
the flow field are small, as seen by examination of the turbulence kinetic energy and the momemtum thickness 
before and after control is applied. We conclude that the controler makes subtle changes to the radiating por- 
tion of the flow without drastically altering its energetics. Our preliminary investigations into the nature of the 
automatically identified control reveal little of how it works. 

Nomenclature 

a Sound speed 
C Control region 

f Frequency 

/o Fundamental frequency 

Fe Excitation forcing 

g Gradient for control update 
k Turbulent kinetic energy (TKE) 
K Integrated quantity of TKE 
M Mach number 

Mc Convective Mach number = -^^ 

P Pressure 

Rea> Reynolds number = ^^ 

St Strouhal number = ■^ 

t Time 
At Timestep 
U, V Velocity in x and y 

C/i Speed of high-speed stream (top) 

U2 Speed of low-speed stream (bottom) 

Uc Approximate convection speed = ^^t+^ 
AU t/,-t/2 
x,y Cartesian coordinates 
a Line search parameter for control update 

P Initial phases of excitation 
8,„ Momentum thickness 

5(a Vorticity thickness 

i" Viscosity 

P Density 

^ Control 

Excitation function 
Noise reduction line (target line) 

Accents/Subscripts/Superscripts 

0 Time average 
oo Ambient 
/ Perturbation from mean 
n Iteration # 
♦ Adjoint variable 

•Research Assistant. 
■■■Assistant Professor. AIAA member. 
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Introduction 
JET noise remains a significant component of aircraft 

noise, and thus, as noise regulations become more 
restrictive, it will affect the attractiveness of planes and 
engines on the market. Although theoretical noises were 
first formulated 50 years ago,' their direct use in mod- 
eling and control has been hampered by the lack of a 
detailed quantitative description of the flow field. Even 
with this information, provided recently for the first 
time by direct numerical simulation (DNS),^~^ effective 
controls are not obvious due to the complexity of the 
flow. 

It has been known for a long time that certain nozzle 
geometry modifications reduce noise. Lobes^ can quiet 
the exhaust, but cause unacceptable thrust loss. So- 
called hush kits are retrofit to engines to mix the flow 
internally to reduce noise outside, but again with sig- 
nificant losses. Recently, chevrons (triangles cut out of 
the nozzle lip essentially parallel to the flow) have been 
found to reduce noise a couple decibels (effective per- 
ceived noise) with minimal incurred loss.^'^ However, 
since trial-and-error experimentation is a component of 
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their design, there is no way of Itnowing how effective 
they can ultimately be. Active control can in princi- 
ple offer greater control authority by its nature, but it 
is simply not known how to use available actuators or 
how to optimize actuator designs to reduce noise. Un- 
derstanding of jet noise is too limited (or jet noise is 
too complex) to provide effective models, even at a phe- 
nomenological level, that can be used in an optimization 
procedure. 

Noise 

DNS Solution 

Sensitivity 
to Control 

40 

20 

s to 

-20- 

-40- 

Control Region — C 

J M = 0.8 

make quiet along 
this line — O. 

I ■ 
20 40 60 

Fig. 1    Schematic of the adjoint-based procedure for deter- 
mining control sensitivity. 

Our approach is an automatic control optimization 
that employs the adjoint of the compressible flow equa- 
tion, as previewed in authors' previous work.^ It cir- 
cumvents our poor understanding of the mechanisms 
and provides automatic means of reducing noise despite 
its complexity. The approach is shown schematically in 
figure 1. Given a numerical solution of the compress- 
ible flow equations for a jet, which currently can only 
be provided by an accurate flow simulation, the adjoint 
of these equations is solved numerically backward in 
time to give the sensitivity of the noise, as defined quan- 
titatively by an appropriate metric, to changes in the 
control at the nozzle. This sensitivity is used to update 
controls for the specific noise reduction objective that 
we have selected. As formulated, success depends upon 
the full flow field information of a DNS, so it is obviously 
not directly practical. Our intention is to develop gen- 
eral laws and guide future experiments and designs and 
to achieve a better understanding of what is currently a 
poorly understood mechanism. Several avenues of gen- 
eralization are being pursued, but are not discussed in 
this paper. 

The Two-dimensional Mixing Layer 
We demonstrate the algorithm and study its results 

when it is applied to the two-dimensional mixing layer 
shown in figure 2. The Reynolds number is /feto = 500, 
based on vorticity thickness. 

\\duldy\max) 
(1) 

ie=Q 

the Mach numbers of the top and bottom streams are 
M = 0.8 and M = 0.0, respectively. The inflow tempera- 
ture is uniform. 

The black line Q. in figure 2 at y = -405o) and ex- 
tending between x = 108oo and x = 405o) is our target 

x/8(a 

Fig. 2   Mixing layer control schematic. 

line, where the noise will be reduced. The actuation is 
a generic forcing term ^{x,t) added to the right-hand- 
side of the energy equation in a small control region C, 
x/5e, G (1,5) and y/8a € (-2,2), also shown in the fig- 
ure. 

Control Formulation 
Our control objective is to reduce the cost functional 

ym= [" [{p-p-fd£idt, (2) 

where p is the instantaneous pressure, poo is the ambient 
pressure, and ro and f i are the beginning and end of the 
times to be made quiet. To determine the sensitivity of j7 
to small modifications of the control (]), we consider a f 
perturbation to the cost j? resulting from a perturbation 
<])' to the control (]).'*' f is the Frechet differential of the 
cost functional^: 

m^)^^-^ 
= lim 

E->0 

2)(t) 
j7((^ + ef)-J7((^) 

77 2p.' 
Jto Jn 

e 

dQ.dt. 

(3) 

This form of f provides the gradient direction g, in 
which to adjust (j) to reduce J?. Instead of being solved 
directly via (3) as expressed in the physical flow vari- 
ables, the gradient g is more easily determined from a 
solution of the adjoint system,^ as forced by J, using a 
well-documented procedure.'" 

Then, the control is updated as 

^' ,«+' :(|)«- •a"g" (4) 
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where a" is a line-search parameter determining the 
change along direction g" for the n"^ iteration. The 
Polak-Ribiere variant of the conjugate gradient algo- 
rithm is used with Brent's line-minimization method" 
to accelerate convergence. 

There are 920 mesh points in the control region C and 
we attempt to reduce the noise for t\-tQ — lOO^a/aoc. 
(j) is free to assume any value at any of the space time 
points. Given out timestep At = O.Q58ii,/a„, we are op- 
timizing 3.84 X 10^ free parameters. Direct exploration 
of this parameter space is clearly prohibitive. 

Computational Methods 
The flow and sound fields are governed by the com- 

pressible Navier-Stokes equations, which are solved nu- 
merically in two space dimensions without modeling as- 
sumptions using a fourth-order Runge-Kutta algorithm 
for time advancement. For spatial differencing, a sixth- 
order Pad6 scheme'^ is used in the x (streamwise) di- 
rection, and the Dispersion-Relation-Preserving (DRP) 
scheme'^ is used in the y (cross-stream) direction. The 
explicit DRP scheme facilitates decomposition across 
different processor on a parallel machine. A specialized 
buffer zone similar to that of Freund''* and a more tra- 
ditional non-reflecting boundary condition'^ are used in 
combination to absorb disturbances as they leave the fi- 
nite computational domain. The same schemes are used 
to solve the adjoint equations, also without modeling 
approximations. 

Instability theory predicts that the most unstable 
mode of the incompressible mixing layer to have St = 
0.032,'^'^ which provides an estimation of the fun- 
damental frequency of our compressible mixing layer, 
since this frequency is not very sensitive to compress- 
ibility for Mc = 0.4.'^'' So we take our fundamental 
frequency to be /o = ^^. Numerical experimentation 
confirms that the mixing layer does respond strongly to 
forcing at or near this frequency. To provide a richer 
flow for our scheme to control, we excite the flow at a 
total of eight frequencies, /o/4, /o/2, 3/o/4, /o, 5/o/4, 
3/o/2,7/o/4, and 2/o. These were selected in an ad hoc 
fashion in this study. A more thorough investigation of 
the effects of this excitation on the noise and its control- 
lability is underway. 

To minimize the direct effect of the excitation on the 
sound field, we define a function \)r with the 8 frequen- 
cies fi listed above, as 

(6) 

8 

X Y, sm[2nfi{x -XQ- Met) + py 
1=1 

xsm[2nfi{y-yo) + ^'], 

(5) 

where \|/o is the amplitude, (Arc^o) is (-55co,0), both ax 
and ay are 0.2, ^x,y are initial random phases. The ex- 
citation, which appears as a bodyforce, is then defined 

as 

F   -^      F   --^ 

so that it is solenoidal and therefore relatively quiet. We 
observed no sound directly from this excitation. The 
amplitude of each mode was \|ro = 0.004pooa^/8a,. Our 
selection of ;t:o and yo puts the excitation upstream of 
the physically realistic portion of the computation. Our 
controller, of course, has no direct knowledge of this ex- 
citation. 

The flow was simulated for time 4005(o/a=«= to allow it 
to reach a statistically stationary condition. Then the 
controller was turned on. We anticipate that the first 
605oi)/a„ is uncontrollable based on the traveling time 
for the effect of the control to reach the target line Q.. 

Noise Reduction 

(a)    0       20      40      60       (b) 

Fig. 3 Comparison of the flow and sound radiation 
(a) without control and (b) with control. Solid black is 
IP'/P"! > 0.003. Contours show vorticity magnitude with 
peak O-TSOM/SO). 

Figure 3 (a) shows the instantaneous flow and sound 
field of the uncontrolled mixing layer with contours 
of vorticity to show the flow structure and regions of 
large \p'\ to mark acoustic radiation. The correspond- 
ing controlled case after 7 conjugate gradient iterations 
is shown in figure 3 (b) at the same time. The noise is 
clearly reduced along the target line. 

This is confirmed quantitatively in figure 4, which 
shows a 77% reduction of cost functional, which is 
about 6.3dB. Furthermore, this sound reduction along 
the target line does not increase the noise elsewhere, as 
we showed before.^ It is not anti-sound. 

Adjoint Field 
To better understand the control process, the evolu- 

tion of the adjoint pressure p* is shown in figure 5. It 
is this quantity that provides the gradient information g 
to update control equation (4). Since the flow equations 
are self-adjoint in the acoustic limit, the adjoint pres- 
sure is initially an adjoint sound wave, excited along 
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Fig. 4   The reduction of the cost. 
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Fig. 5 Adjoint pressure: (a) f = 1955a/a„, (b) ? = 1505co/a«, 
(c) t = ]205(c/a„, (d) t — 755a/a„. The time goes backward in 
the adjoint solution. 

the target line by the cost. As this wave encounters the 
mixing layer, it excites instability waves, which move 
upstream in the mixing layer to the control region. Fi- 
nally, the gradient information is recorded inside this 
region. It is the instability waves in the adjoint that 
dominates the gradient, which suggests that the control 

mechanism is via the instabilities in the mixing layer. 
Given this qualitative behavior of the adjoint, the 

mechanism of noise control can be expressed as follows. 
The control interacts with the flow. This excitation al- 
ters (slightly, we shall see) the instabilities in the flow. 
The modified flow field is quieter. Works are ongoing to 
identify the precise mechanism quantitatively. 

Control Forcing 
Figure 6 shows twenty snapshots of the optimal con- 

trol forcing at different times. In the control box, the 
forcing is distributed in a non-intuitive manner. The 
apparent "structure" in the control ^(x,y) moves at a 
speed between O.lUc and 1 .lUc, where Uc is the antic- 
ipated structure convection velocity, which is close to 
the expected convective speed Uc, but little else can be 
understood via visualizations. 

In an attempt to develop a quantitative description 
of the action of the forcing, we define integrals over the 
control region to study the net influence on the flow: 

Qit) = J q{x,t)dC. (7) 

Figure 7 shows the history of the net energy, veloc- 
ity and control forcing in the control region. We see 
no correlation between the forcing and integrated flow 
variables in the control region. We anticipate that there 
must be some correlation, but more data will be needed 
to study its statistics if it is at all possible. The flat part 
at the end of the forcing history is caused by the time 
delay between the control and the target. Control in 
that flat piece would not alter J on the target line in 
to<t<tu 

Flow Field Change 
Despite the large decrease in the radiated sound, the 

mixing layer flow is changed surprising little by the con- 
trol. Figure 8 shows the spreading of the mixing layer 
in terms of its momentum thickness, 

/- 
+~p(M-t/,)(f/2-M) 

pooAf/2 
dy. (8) 

We see that the control changes its downstream evolu- 
tion only slightly. The waviness of the profiles is believed 
to be due to the limited statistical sample in the to to t\ 
simulation time, but might also be due to the nature of 
the parings which is known to cause jumps in thickness. 

The turbulence kinetic energy, defined as 

1- 
k=^p[{u'y + {v'n (9) 

where u' and v' are fluctuation of velocities, is also 
nearly unchanged. Figure 9 shows 

K,ix) = /        kdy 
y-soSffl 

(10) 
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and 
/•eoSo, 

Ky{y) = / kdx 01) 

with and without control. The noise reduction is clearly 
not due to turbulence suppression. Previously,' we also 
show that there is little change in how the energy is 
arranged in large turbulent structures. Only a slight 
change in their phasing was observed. 

Conclusion 
An adjoint-based approach has been developed that 

reduces the noise radiated by a two-dimensional mixing 
layer by 6.3dB along a specified line in the far-field. 

The changes of the flow field due to the control forc- 
ing are relatively minor, which is possible because only 
a small fraction of the flow's energy, that with a super- 
sonic phase velocity, radiates. Our simulations indicate 
that, at least in a two-dimensional mixing layer, this 
part can be altered with minimal control authority to 
dramatically reduce the noise. 

The control forcing itself is non-intuitive and the cor- 
relations between it and other flow properties are not 
clear yet. Work continues identifying practical control 
laws and understanding the details of how the present 
control works. 
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Fig. 6 Control forcing: (a) r = 0, (b) r = 55to/a«, (c) r = 105m/a=o, (d) t = 155a)/a~, (e) t = 205co/a«,, (f) f = 255to/fl«, (g) 
t = 305a,/a», (li) t = 355o,/a«=, (i) t = 405o>/ao„, (j) t = 455a,/flc», (li) / = 505oj/a„, (I) t = SSb^/a^, (m) / = 60Sa,/ac», (n) t = 655o,/a„, 
(o) t = 705(o/ao=, (p) f = 755cD/aoo, (q) ? = 805oj/a.c, (r) t = 855to/a«, (s) t = 90ba/a^, (t) t = 955co/aoo. Black indicates tlie positive 
forcing (> 0.01 pood^/Sm), and gray indicates the negative forcing (< 0.01 p=»a^/5a)). 
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Fig. 7   History of integrals inside the control region. 
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Fig. 8   Change of the momentum thickness of the mean flow: 
 without control; with control. 
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Fig. 9 Comparison of integrated turbulence kinetic energy 
as defined in (a) equation (10) and (b) equation (11). The lines 
indicate the case without control and the case with con- 
trol . 
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Aeroacoustic optimization and control 

A summary of work performed at UC San Diego under AFOSR contract F49620-01-1-0048 

by Thomas R. Bewley, Flow Control Lab, Dept. of MAE, UC San Diego 
1 January 2003 

During the past three years, the Flow Control Lab at UC San Diego, under the direction of Prof. Bewley, has developed 
and refined advanced adjoint-based tools for the analysis, optimization, and control of complex nonlinear dynamics in 
canonical turbulent flow systems. In particular, under the present funding, our core focus has been on the adjoint analysis 
of sound production in a compressible turbulent jet. This report will briefly summarize our primary accomplishments on 
this core effort and also review some closely related investigations which have been spawned by this effort. 

1    Core focus 

The focus of this work is the reduction of noise emanating from a compressible round jet. This study is motivated by 
the Air Force problem of the reduction of both personnel hazards and structural fatigue due to heightened sound pressure 
levels in the vicinity of operating jet engines. An introduction to the jet noise control problem is given in Figure 1. 

In prior work. Prof Freund developed a Direct Numerical Simulation (DNS) code which captures the production of 
sound in a compressible turbulent jet from first principles. Though this code has been well validated against experimen- 
tal measurements, it is difficult to glean from the massive numerical databases which this code produces an adequate 
low-order physical explanation of the dominant jet noise production mechanisms. For this reason, the present effort has 
focused on the perturbation and adjoint analysis of the simulation databases produced by Prof Freund's jet noise code. The 
distinction between perturbation and adjoint analyses, and the reason one is particularly interested in the latter for the opti- 
mization of high-dimensional control distributions for turbulent flow systems which exhibit complex nonlinear dynamics, 
is illustrated in Figures 2 and 3. The motivation for using adjoint analysis in the compressible jet noise reduction problem 

(a) 

W^'^S^^-j. 

(c) 

Figure 1: Introduction to the jet noise control problem, (a) A prototypical application: a Pratt & Whitney JT8D engine 
with high-pressure compressor air ducted to the jet nozzle to provide on-demand active control of the jet exhaust near 
the nozzle lip. The rig shown here is designed for mixing enhancement; it is anticipated that effective actuators for the 
purpose of jet noise reduction, once optimized, might be an order of magnitude smaller, (b) The control problem: the 
turbulent break-up of the jet core radiates a large amount of noise. Though this flow may be simulated accurately with 
Direct Numerical Simulation (DNS) techniques, the physics of this noise generation is still poorly understood. We wish to 
reduce the noise that radiates toward a particular observation region based on our accurate high-order DNS system model 
even in the absence of an adequate low-order physical explanation of the dominant jet noise production mechanisms, (c) 
The adjoint analysis: by targeting the noise in the observation region in a DNS of the jet system, an adjoint analysis 
provides gradient information which can be used to optimize the space/time schedule of control forcing at the jet nozzle. 



Effect 2 Effect 

Effect 3 

Figure 2: Perturbation analysis (left) and adjoint analysis (right) of the jet system. 
Note that perturbation analyses characterize control -> effect relationships: 
• If I change the control here, how, when, & where will that effect the flow? 
On the other hand, adjoint analyses characterize effect ->■ control relationships: 
• If I want to achieve a desired effect here, how, when, & where should I apply control to the flow? 
The answer to the latter question is of particular interest when a high-dimensional forcing schedule for a complex system, 
such as that coordinating several actuators to modify the turbulent break-up of a jet exhaust (see Figure 1 a), is being 
optimized to achieve a desired effect, such as the reduction of radiated noise in a particular direction (see Figure lb). 

^v^ h^^^. 

Figure 3: Perturbation analysis (top) characterizes the effect on the entire flow resulting from a small change to a 
particular control quantity, taken here to be a sinusoidally-varying mass source at point Xc. Adjoint analysis (bottom) 
characterizes the effect on a particular flow quantity, taken here to be high frequency noise at pointXg, due to small changes 
in the control applied anywhere in the flow. Note that a perturbation analysis involves marching the governing equation 
forward in time, whereas an adjoint analysis involves marching the corresponding adjoint equation backward in time. 

is similar to the motivation for using adjoint analysis in the incompressible wall-bounded flows which the UCSD Flow 
Control Lab is studying under separate funding. However, the details involved in the compressible jet case have proven to 
be much more involved. In particular, the jet noise problem requires highly accurate cylindrical-coordinate compressible 
flow, perturbation, and adjoint solvers with appropriate treatment of the coordinate singularity at the centerline and the 
appropriate modeling of the "ambient" inflow and outflow boundary conditions around the entire flow domain. These 
numerical issues are extremely delicate, and have been examined in detail in collaboration with Profs. Jonathan Freund 



O -Xe 
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Figure 4: Adjoint analysis indicates not only when and where control may be applied to achieve the desired effect, but 
also to which component of the governing equation. In the simulation shown above, the adjoint density (top) and adjoint 
pressure (bottom) reveal the sensitivity of the radiated noise (the pressure component of the far-field perturbation) at 
point Xe and time te to additional forcing of, respectively, the energy equation (top) and the continuity equation (bottom) 
everywhere in space Xc and for all times tc < fe in a 2D simulation of the jet system. Note that the disturbance in the 
adjoint pressure grows rapidly as it propagates within the jet towards the nozzle at the convective velocity as the adjoint 
field evolves (in backwards time). In contrast, the disturbance in the adjoint density essentially propagates right through 
the jet, experiencing significant refraction but not slowing to propagate at the convective speed of the jet within the jet 
shear layers. This indicates that mass sources are more efficient than energy sources in modifying the hydrodynamic field 
(at low temporal frequencies) in a way which changes the radiated noise (at high temporal frequencies). 

and Sanjiva Lele in the present study. Details concerning our recent accomplishments in this collaborative effort may 
be found in Cerviiio, Bewley, Freund, & Lele (2002) and Cervifio & Bewley (2002), which are attached as supplements 
to the present report. To summarize these supplements briefly, our 3D compressible cylindrical-coordinate perturbation 
and adjoint solvers have been written and thoroughly tested on 2D jet flows. A representative adjoint simulation which 
effectively provides an unsteady adjoint Greens function for the present problem (in 2D) is illustrated in Figure 4. We are 
currently testing these codes in the 3D setting. 

It is important to note that, contrary to our understanding of this analysis approach at the outset of this investigation 
(and in our original proposal on this topic), it was found that adjoint analyses do not accurately identify the "source" of the 
radiated noise in such a system. Rather, they identify how, when, and where additional "control" forcing may be applied 
to the existing system to modify the radiating noise already present in a desired manner. This distinction between noise 
"sources" (which adjoint analyses do not identify) and sensitivity to additional "control" forcing (which adjoint analyses 
do identify) is quite important in the proper interpretation of the present work. 

2   Related activities 

The jet noise reduction problem which we have chosen to study in this work is itself of important engineering interest. In 
addition, this problem brings to light many generic issues which are to be expected when the adjoint analysis procedure 
is extended to other turbulent flow systems in the future. We therefore believe the present study will have a fundamental 
impact well beyond the analysis of the present jet noise database. We summarize below three of the more fundamental 
investigations recently performed by our lab which have been spawned by issues that have arisen in our investigation of 



nonlinear state equation 
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Figure 5: The four essential components of the adjoint-based optimization process of a multiscale PDE system. Each 
component of this process is associated with a distinct opportunity for regularization. 

the jet noise control problem. We do not have any funding for any of these three efforts; they have been conducted by our 
lab using a small amount of the present funding together with other discretionary funding because they relate directly to 
our core focus problem, and will hopefully grow into funded efforts in the future so that they can be explored in greater 
detail. 

2.1    Regularization of adjoint analysis 

In the course of performing adjoint analyses of the jet noise system, we have been forced to grapple with subtle issues 
related to the multiscale nature of the dynamical systems under consideration. Turbulent flows are characterized by a 
nonlinear cascade of energetic motions over a broad range of length scales and time scales. Though much attention has 
been paid to the appropriate treatment of this so-called energy cascade in the turbulence simulation literature, much less 
is known about how to deal with it appropriately in the adjoint analysis of turbulent flow systems. Our lab has recently 
completed an extensive and fundamental study of this issue on a representative multiscale 1D model problem, identifying 
a comprehensive framework which encompasses and interrelates all of the regularization opportunities available, as indi- 
cated in Figure 5. Full details concerning this comprehensive framework are laid out in Protas, Bewley, & Hagen (2002), 
which is attached as a supplement. We are currently working to leverage and refine this new understanding of how to 
reframe adjoint analyses to properly treat multiscale turbulent flow systems of both fundamental and engineering interest, 
such as the present problem of the reduction of jet noise. 

2.2   Quantifying the stabilizability of the linear modes of the system 

In order to better understand the jet flow system and how it may be modified by control input, it is quite useful to quantify 
the degree to which the least-stable eigenmodes of the linearized system may be affected by control input at the actuators. 
The adjoint machinery developed in the present investigation is precisely the right tool for this purpose. In order to clarify 
how this may be done, we have completed an extensive study of the stabilizability of the linear complex Ginzburg-Landau 
(CGL) model problem. This study is reported in Lauga & Bewley (2003), which is attached as a supplement. In the CGL 
model system, the open-loop system eigenfunctions and adjoint eigenfunctions are available analytically. The extension 
of this approach to a DNS approximation of a dynamical system, in which the eigenfunctions and adjoint eigenfunctions 
are not available analytically, is straightforward using the implicitly-restarted Arnoldi method to determine the leading 
eigenvectors and adjoint eigenvectors. This analysis is currently being applied to the DNS jet code by a new post-doc in 
our lab. 



2.3   Control of periodic orbits 

A chaotic attractor is well described by its embedded periodic orbits. A strategy for the jet noise control problem which 
poses an attractive alternative to iterative time-evolving simulations (which are very costly computationally) is to design 
controls such that the embedded periodic orbits of the chaotic attractor of the turbulent flow have favorable properties (that 
is, low noise in the region of interest). If this (perhaps simpler) goal can be attained, the associated turbulent flow should 
have the same favorable properties. The difficulty with posing the jet noise control problem in this setting is that there 
are, in general, many solutions and approximate solutions to nonlinear dynamic systems in the time-periodic setting, even 
though the solution in the time-evolving setting (that is, from known initial conditions) is unique. Thus, one is left with 
a question of which time-periodic solution one should design the controls for, and how can one find this time-periodic 
solution? Our lab has come up with a natural and elegant solution to this problem: design for the worst case in the 
spirit of a noncooperative game. That is, find the best controls for the worst (of the several) time-periodic flow solutions. 
This may be found by an appropriate sequence of approximations, which allows both the controls and the worst solution 
to be idenfified with a gradient-based algorithm. Bewley & Trenchea (2002), which is attached as a supplement, lays 
the mathematical foundation for this approach, which might well provide an optimization algorithm for quasi-periodic 
turbulent flow systems which is significantly cheaper computationally than the standard (time-evolving) approach. 

3   Publications and presentations 

Prof. Bewley has given numerous conference talks and departmental seminars, to both fluids audiences and controls 
audiences, highlighting the present work. In the calendar year 2002, Prof. Bewley gave 17 major talks and seminars, 
including a full-day minicourse on Flow Control (in Madrid, Spain) sponsored by the NATO RTO Consultants & Exchange 
Program and two large plenary lectures, one at the Ninth European Turbulence Conference (in Southampton, U.K.), and 
one at the Third Symposium on Smart Control of Turbulence (in Tokyo, Japan). The papers from these two plenary 
lectures [Bewley (2002) and Bewley & Protas (2002)], as well as other related publications, are available at the UCSD 
Flow Control Lab's web page:   http: //turbulence .ucsd.edu/references .html. 
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Perturbation and adjoint analyses of flow-acoustic 
interactions in an unsteady 2D jet 

By L. I. Cervinot, T. R. Bewleyt, J. B. Preundt, AND S. K. Lele 

It is well known that noise sources embedded in a jet produce sound fields which refract 
due to the presence of the flow. The refraction due to the mean flow has been appreciated 
and modeled for some time, but only occasionally is the significant refractive effect of 
the unsteadiness of the flow acknowledged. In the present work, perturbation and adjoint 
analyses of high-frequency acoustic fluctuations are performed in a numerical simulation 
of a cold 2D jet system at a Mach number of M = 0.5 and a Reynolds number based 
on the jet diameter of Reo = 5000. The jet system is hydrodynamically excited into a 
sinuous mode near the jet exit at a Strouhal number of St = 0.4, and exhibits the classical 
vortex roll-up phenomenon. Acoustic perturbations to this flow system are analyzed at 
Strouhal numbers of St = 0.8, St = 2, and St = 8 (that is, 2x, 5x, and 20x the vortex 
roll-up frequency). It is found that the unsteady effects of the flow cause a significant 
frequency broadening in both the perturbation and adjoint analyses. 

1. Introduction 
The problem of jet noise has significant engineering consequences. The far-field noise 

radiated by an unsteady flow system may be computed directly from a highly-accurate 
simulation of the compressible Navier-Stokes equation, or may be extracted from an 
approximate compressible flow simulation using any of several "acoustic analogies", in- 
cluding the celebrated Lighthill and Lilley equations. Despite their elegance and the fact 
that they are exact expressions, such acoustic analogies generally fail to isolate the true 
"sources" of far-field noise from significantly stronger noise "sources" which almost com- 
pletely destructively interfere and radiate relatively little energy to the far field, as with 
the so-called quadrupole noise sources in a turbulent jet. 

In order to better understand the physics of far-field noise and how it may be con- 
trolled, the present investigation represents one in a series of efforts to interrogate nu- 
merical databases, which capture the production of far-field sound directly, by accurate 
simulations of the compressible Navier-Stokes equation. The present paper focuses on 
the significance of acoustic scattering due to unsteady vortex roll-up in the perturbation 
and adjoint analyses central to this investigation. 

There have been several previous investigations aimed at analyzing the effects of refrac- 
tion in perturbation and adjoint analyses due to the presence of the flow. Many of them, 
however, consider the governing equations only after they have been linearized about 
the mean flow. For example, Durbin (1983a, 1983b) derived a high-frequency Green's 
function from an idealized steady jet profile. Tarn & Auriault (1998) obtained an adjoint 
Green's function, using a steady jet profile obtained from a RANS calculation, and re- 
lated it to the corresponding Green's function of the acoustic field at a particular point 
in the flow field due to additional localized sources embedded within the jet. 

t Univ. of California, San Diego 
t Univ. of Illinois, Urbana-Champaign 
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In a turbulent flow, however, acoustic phenomena are closely related to system un- 
steadiness. This was characterized in Freund & Fleischman (2001), where a refraction 
analysis was performed by means of ray tracing. It was observed that, when a noise 
source was located within the laminar jet core, the difference in the directivity calculated 
by the mean flow analysis and the unsteady flow analysis was rather small. However, 
when the source was placed farther downstream on the jet axis, the rays in the mean 
flow were significantly refracted by the unsteady jet shear layers, and the time average 
of the unsteady analysis was completely different than the corresponding analysis of the 
mean flow. Suzuki & Lele (1999) and Suzuki (2001) performed Green's function analyses 
in unsteady 2D mixing layers and boundary layers and analyzed the effects of acoustic 
scattering. The interaction between incoming plane waves at various angles of incidence 
with the unsteady vortices in the flows were investigated in detail, and the results com- 
pared with the ray-tracing procedure. A signiflcant broadening of the frequency content 
of the acoustic wave after it passed through the mixing layer was observed, indicating sig- 
nificant flow-acoustic interaction. The present paper extends these lines of investigation 
with perturbation and adjoint analyses of cold 2D jets. 

1.1. Approach 

As mentioned in the Abstract, the flow system considered in this work is a Mach 0.5 cold 
2D jet at a Reynolds number Reo = pDUj/fj = 5000 with sinusoidal excitation near the jet 
exit at S, = foD/Uj = 0.4. Refraction effects are expected to be significantly weaker in a 
cold jet than in a hot jet, as the speed of sound is identical in the ambient fluid and the jet 
core. In fact, in sharp contrast with the perturbation and adjoint analyses of the mean of 
a heated jet as considered by Tam & Auriault (1998), the corresponding analyses of the 
refraction due to the mean of the cold jet flow studied here exhibit very little refraction. 
Nevertheless, as shown in this paper, the acoustic scattering due to the unsteady vortex 
roll-up in the present flow is quite pronounced even in this cold jet system, illustrating 
signiflcant opportunities to force the hydrodynamic field (at low frequencies) in order to 
modify the high-frequency radiated noise. 

The simulation code used in the present work implements the full compressible Navier- 
Stokes equation using a numerical method based closely on that developed by Freund, 
Moin, & Lele (1997). The present simulations do not resolve any solid boundaries. In- 
stead, artificial "buffer zones" have been used around the domain of physical interest, 
coupled with characteristic-based boundary conditions on the computational boundaries. 
This type of ad hoc but effective numerical boundary conditions simulates the effect of 
quiescent far-field boundary conditions on the physical system, and has now become 
standard for this type of problem. It is discussed further in, e.g., Freund (1997) and 
Colonius, Lele, & Moin (1993). 

As summarized in Figure 1, two types of analyses are considered in the present work. 
In sec. 2, perturbation analyses of the flow fleld are performed in order to obtain a 
characterization of the propagation of disturbances in the system as it evolves forward 
in time. In these analyses, artificial RHS forcing (to be referred to in this paper as the 
"control") is introduced into the jet system, and the resulting perturbation to the flow 
which is introduced by this forcing is computed. As depicted in Figure 1, such analyses 
characterize control->-efifect relationships. A representative perturbation analysis of the 
present system is shown in the top row of Figure 2. 

In sec. 3, adjoint analyses of the flow fleld are performed in order to characterize the 
sensitivity of a particular metric measuring the flow system to additional forcing of the 
governing equations. In these analyses, an "adjoint system" is defined and computed in 
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FIGURE 1. Perturbation analysis (left) and adjoint analysis (right) of the jet system. 
Note that perturbation analyses characterize control -> effect relationships: 
• /// change the "control" here, how and where will that affect the flow? 
On the other hand, adjoint analyses characterize effect -> control relationships: 
• If I want to achieve a desired effect here, how and where should I apply "control" to the flow? 
The answer to the latter question is of particular interest when a high-dimensional forcing schedule for a 
complex system, such as a turbulent jet exhaust, is being optimized to achieve a desired effect, such as 
the reduction of radiated noise in a particular direction. Note that adjoint analyses do NOT identify the 
"source" of the radiated noise in such a system. Rather, they identify how and where additional forcing may 
be applied to the existing system to modify the radiating noise already present in a desired manner. 

FIGURE 2. Perturbation analysis (top) characterizes the effect on the entire flow resulting from a small 
change to a particular "control" quantity, taken here to be a sinusoidally-varying mass source at point Xc- 
Adjoint analysis (bottom) characterizes the effect on a particular flow quantity, taken here to be high 
frequency noise at point Xe, due to small changes in the "control" applied anywhere in the flow. Note that a 
perturbation analysis involves marching the governing equation forward in time, whereas an adjoint analysis 
involves marching the corresponding adjoint equation backward in time. 

order to identify the gradient of a "cost function" (which mathematically quantifies the 
metric of interest) to additional forcing of the jet system. As depicted in Figure 1, such 
analyses characterize efifect-^control relationships. A representative adjoint analysis of 
the present system is depicted in the bottom row of Figure 2. 
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FIGURE 3. Adjoint analysis of sound waves, produced by a monopole sound source at the point marked by 
the X, in a stationary fluid. In the problem depicted here, the desired effect is to reduce the intensity of the 
sound field in the "interrogation region" outlined by the rectangular box. The corresponding adjoint field is 
driven by the sound waves in the box and propagates away from it, as visualized above, illustrating possible 
locations for "antinoise" sources where additional forcing could be applied to achieve the desired effect 
(namely, to reduce the sound pressure level within the box). Even though the governing system represented 
here is a linear, constant-coefficient PDE and the cost function is quadratic in the state variables, the adjoint 
field identifies a range of effective "antinoise" forcing locations, and does not accurately identify the isolated 
sound source. Note that the focusing of the adjoint field on the isolated sound source is found to improve 
when the size of the box is increased as compared with the wavelength of the sound. 

It is important to note that adjoint analyses do not identify the "origin" or "source" of 
the radiated sound in such a system. This point is readily evident by considering a simpler 
model system (without the jet present), as depicted in Figure 3. Thus, identification 
of sound "sources" is not to be expected from adjoint analyses when applied to more 
complex systems, such as the unsteady jet considered in the present work. 

Note that, in the remainder of the present work, the cost functions considered are 
essentially pointwise measures of the sound field, and the adjoint field computations are 
therefore referred to as "adjoint Green's functions". 

2. Perturbation analyses 

A logical starting place for this investigation is to assess the effects of hydrodynamic 
unsteadiness (that is, vortex roll-up) on small perturbations to the flow system. In par- 
ticular, we will investigate the scattering of low-amplitude acoustic waves as they pass 
through the unsteady jet system. In order to perform a perturbation analysis of this sort, 
one approach is to calculate numerically the Hnearized ("perturbation") equations. The 
code used to solve such a problem is often referred to as a "tangent linear" code. With 
this approach, the perturbation field is obtained directly. 

An alternative "finite-difference" approach allows us to calculate the perturbation field 
using the nonlinear flow solver itself, without writing a separate tangent linear code. 
This is achieved by computing a "nominal" flow, computing a second "perturbed" flow 
(with the appropriate small perturbation applied to the initial conditions, the boundary 
conditions, or the right-hand-side forcing), and taking their difference, dividing by the 
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perturbation amplitude e. In fact, in the e -> 0 limit, this is how we define the so-called 
"perturbation field". However, as a computational strategy, this approach presents certain 
difficulties. If e is made too small, the finite-precision arithmetic of the computer leads to 
diff'erencing errors, as the two fields being compared are almost identical. On the other 
hand, if e is made too large, the "small" perturbation assumption breaks down, and e^ 
terms in the Taylor series expansion begin to become significant. In practice, selecting an 
appropriate value of £ to minimize the sum of these spurious effects is difficult. Though 
higher-order finite-diff'erence approximations of the perturbation field can be proposed, 
they are also plagued by the competition of these two spurious effects. 

In order to circumvent the difficulties cited above associated with selecting e in a finite- 
difference approximation of the perturbation field, an alternative approach, referred to 
as the Complex Step Derivative (CSD) method, has been developed (Lyness & Moler 
(1967); Squire & Trapp (1998)). This method has already been applied broadly in the 
optimization literature (see, e.g., Martins, Sturdza, & Alonso (2001)). The basis of this 
method is to redefine all of the real variables in the system as complex, and to perform 
the nominal (real) simulation as before while introducing the small perturbation into 
the imaginary part of the system. It can be shown by a straightforward Taylor-series 
expansion of the complex fields which result that, to order e^, the real part of the re- 
sulting field contains the nominal fiow and the imaginary part (divided by e) contains 
the perturbation field sought. Further, this calculation is not plagued by the "difference 
of large numbers" problem, so e may be made very small without inducing differencing 
errors in the calculation of the perturbation field. This provides an extremely accurate 
technique for computing a perturbation analysis when the simulation code nominally 
involves only real arithmetic (as is the case with the present 2D simulations), and is the 
approach selected in the present computations!. 

The result of a representative perturbation analysis is shown in the top row of Figure 
2. A localized mass source which oscillates sinusoidally in time (at five times the vortex 
roll-up frequency of the jet) has been introduced in the jet at point Xc- This has been 
accomplished by adding a forcing term to the right-hand side of the continuity equation. 
The addition of this forcing excites an acoustic wave, which is significantly refracted by 
the unsteady vortex roll-up. Mean-flow analyses, of course, fail to capture such scattering, 
which is due to the unsteadiness of the flow. 

It is also straightforward to characterize acoustic waves coming from the far field. 
Computationally, the approach is slightly different: unsteady forcing is used along a line 
within the non-physicaJ "buffer zone", and particular care must be exercised to avoid 
spurious effects in the corner regions of the computational domain. Physically, however, 
the result is qualitatively similar, and significant scattering is encountered when the 
acoustic field passes through the unsteady jet, as shown in Figure 4. 

t In fact, it is interesting to note that it is straightforward to extend the CSD method to 
pseudospectral codes which nominally employ complex arithmetic. This approach was investi- 
gated briefly during the CTR summer program, and is reported in Cervine &; Bewley (2002). 
Unfortunately, the FFT's used in such pseudospectral extensions of the CSD approach combine 
the nominal (real) and perturbation (imaginary) parts of the analysis, and thus the accuracy of 
this approach for computing the perturbation field is found to be not significantly better than 
the second-order finite-difference approach. 
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FIGURE 4. Perturbation analysis: refraction of pressure waves coming from the far-field by the unsteady 
2D jet system 

3. Adjoint analyses 
The ultimate goal of the present research effort is to identify effective control strategies 

to reduce appropriate metrics of jet noise, extending the previous work reported by Wei 
& Freund (2002) of reducing the noise in a 2D mixing layer using a similar adjoint- 
based approach. Thus, though the perturbation analyses are qualitatively interesting, 
adjoint analyses contain significantly more relevant quantitative information related to 
our ultimate goal, and form the focus of the remainder of this study. 

3.1. The adjoint operator 

We now summarize briefly the adjoint formulation used in the present work. The con- 
tinuous (PDE) description of the governing equation is first Unearized and integrated by 
parts to obtain both an adjoint PDE operator useful in defining the adjoint field, and an 
identity that (once boundary conditions, initial conditions, and the right-hand-side forc- 
ing of the adjoint system are defined appropriately) may be used to express the required 
flow sensitivities in the continuous setting. As a final step before implementation in the 
numerical code, the state and adjoint equations are discretized in space and time in a 
consistent fashion. 

We first define a state vector q, a perturbation vector q', and adjoint vector q* as 

q = (3.1) 

We may then denote the nondimensionalized full compressible Navier-Stokes equation 
for an ideal gas with constant specific heats Cp and Cy and constant Prandtl number Pr 
as 

^(q)=0. (3.2) 

where 
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and <I> denotes the irreversible viscous dissipation term. Assuming appropriate expressions 
for jj and /JB, the simulation code used in the present work implements the full compress- 
ible Navier-Stokes equation outlined above. In order to develop an adjoint solver, certain 
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additional approximations have been made, namely that ;U= constant, /JB = constant, and 
<t> = 0. These convenient simplifications are thought to be acceptable in the approximate 
adjoint analysis, as the spatial and temporal variations of viscosity in the system and 
the irreversible viscous dissipation in the heat equation both affect the dynamics of the 
system only at the small length scales, and are thus thought to be relatively unimportant 
in terms of the mechanics of sound generation. Subject to these additional assumptions, 
and following the established procedure for performing an adjoint analysis [see, e.g., ap- 
pendix B of Bewley, Moin, & Temam (2001) for the case of an unsteady compressible 
Euler system], we may take the Frechet derivative of this governing equation to obtain a 
linearized equation of the form 

5V:'(q)q' = 0. (3.3) 

Selecting an L2 duality pairing! of the form (q*,q') = Jo Ia<l* -ci'dxdt, this linearized 
operator is then transformed according to the identity 

(q*,iA/:'(q)q') = (^'(q)*q*,q')+ft- (3.4) 

After some algebra involving several integrations by parts, it is straightforward to show 
that the adjoint operator corresponding to the approximate linearized form of the com- 
pressible Navier-Stokes equation in this framework is: 
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It is important to note that, in the present derivation, we have associated the "adjoint 
pressure" with additional forcing of the continuity equation, and the "adjoint density" 
with additional forcing of the selected form of the energy equation. [This is in contrast 
with, e.g., the nomenclature selected by Tam & Auriault (1998).] The nomenclature has 
been defined in this manner in order to have a logical zero-Mach-number limit. In this 
limit, p and p* are constant, the forward and adjoint energy equations may be dropped, 
and the state, perturbation, and adjoint vectors reduce to 

In a domain enclosed by solid boundaries, by selecting the appropriate adjoint bound- 
ary and initial conditions, we can make the boundary term b in (3.4), which results from 
the several integrations by parts, equal to zero. Alternatively, as in the present analysis, 

t In multiscale PDE systems such as the present, the Z-2 duality pairing is not necessarily the 
best choice for defining the adjoint operator, and incorporating spatial or temporal derivatives 
into this pairing is recognized to have an important regularizing effect on the spectra of the 
resulting adjoint field that must be calculated. For further discussion of this important topic, 
see Protas, Bewley, k Hagen (2002). 
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FIGURE 5. Adjoint density (top) and adjoint pressure (bottom) reveals sensitivity of the pressure compo- 
nent of the perturbation field at point Xe at time te to additional forcing of, respectively, the energy equation 
(top) and the continuity equation (bottom) everywhere in space Xc and for all times tc < te- Note that, by 
causality, the adjoint field is zero for tc > te', that is, the adjoint field marches backward in time from t = te- 

we may surround the physical part of the domain of interest in both the flow and adjoint 
problems with the numerical equivalent of quiescent far-field boundary conditions which 
propagate no information towards the physical domain of interest; this again effectively 
allows us to neglect the influence of b. By so doing, the adjoint identity (3.4) then reveals 
that the following two analyses are equivalent: 

#1) analyzing the effect on q'j(\e,te) (that is, the eflFect on the i'th component of the 
perturbation fleld at point x = x^ and time t = te) created by applying a localized force 
g'j = 8(x - Xc)5(f - tc) to the /th component of the perturbation equation, and 

#2) analyzing the effect on q*j{xc,tc) created by applying a localized force 
g? = 6(x - Xe)8(f - te) to the rth component of the adjoint equation. 

By the identity (3.4), we may relate the perturbation and adjoint flelds in these two 
analyses by 

^l{Xe,te)=q*i\c,tc). (3.5) 

Note that the point x^ and time tc do not appear in the formulation of the adjoint system 
in problem #2, but arise only in the subsequent analysis of the resulting adjoint field. 
Thus, a single adjoint calculation allows us to quantify the effect of forcing anywhere 
in the flow system (for any Xc, tc, and j) on the particular flow quantity q'^(xe,te). This 
relation between the perturbation and adjoint Green's functions provides an alternative 
but equivalent explanation of the signiflcance of adjoint analyses to the more general 
"controls-oriented" explanation provided in Figure 1. 

3.2. Calculation of an adjoint Green's function 

Figure 5 illustrates a computation of the adjoint Green's function, as formulated at the 
end of the previous section, obtained by forcing the adjoint system 5Vl'(q)*q* = g* with 
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FIGURE 6. Evolution of adjoint pressure (left) and adjoint density (right) in time at the points {x,y} of 
(solid) {5£>,0}, (dashed) {5D,2.5D}, (dot-dashed) {5D,-2.5D}. 
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FIGURE 7. Adjoint pressure at three different locations at the centerline: at (dot-dashed) x = 8, (dashed) 
x = 9, and (solid) ;c = 10. When the actual evolutions of the variable (left) are shifted by the time corre- 
sponding to the convection velocity (right), there is an approximate superposition of the three lines, which 
indicates that these perturbations convect toward the nozzle at the convective speed. 

an isolated force at a particular point in space and time, that is, g* = 8{x — Xe)8{t — te)■ 
As discussed above, each component j of the resulting adjoint Green's function, at each 
point in space Xc and each instant in time tc, may be interpreted as the j'th component 
of the perturbation to the flow at point x^ and time te that would arise due to localized 
forcing of the corresponding component j of the flow system at the corresponding point 
in space x^ and time tc- The calculation reported in Figure 5 takes i= I, that is, the 
adjoint field shown characterizes the effect on the perturbation pressure p'{xe,te). 

It is interesting to note (see Figure 5) that the disturbance in the adjoint pressure grows 
rapidly as it propagates within the jet towards the nozzle at the convective velocity as 
the adjoint field evolves (in backwards time). In contrast, the disturbance in the adjoint 
density essentially propagates right through the jet, experiencing significant refraction. 
This behavior is quantified further in Figures 6 and 7. The component of the adjoint 
density that propagates at the convective speed of the jet within the jet shear layers is 
found to be quite small. This indicates, as one might expect, that mass sources are more 
efficient than energy sources in modifying the hydrodynamic field in a way which changes 
the radiated noise. 
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FIGURE 8. Adjoint density field due to incoming waves from the far field. 

3.3. An adjoint Green's function at temporal frequency f 

An alternative to forcing the adjoint problem at an isolated time te is to force it at a 
specific temporal frequency /. This corresponds roughly to looking at the sensitivity of 
the sound field at point Xe (at the frequency and phase selected) to additional forcing 
of the governing equations. This correspondence is only approximate, however, as the 
system under consideration has time-varying coefficients, and therefore frequency-based 
characterizations of the system's response are of Umited usefulness. Note that, in systems 
with constant coefficients, a Bode plot completely characterizes the frequency response 
of the system. Such a frequency-domain analysis may only be applied to the mean flow. 
Nonetheless, an approximate characterization of this sort may still be developed for the 
present system (in the time domain) simply by forcing the adjoint system sinusoidally 
at the frequency of interest during the backwards march for the adjoint field. The result 
of such a calculation is illustrated in the bottom row of Figure 2. The scattering of the 
adjoint field due to the vortex roll-up is a necessary consequence of the scattering in the 
corresponding perturbation fields. 

3.4. An adjoint Green's function corresponding to far-field noise 

An alternative to forcing the adjoint problem at an isolated point in the computational 
domain Xg is to force it along a line near the boundary of the computational domain 
(that is, in the "buffer zone" used to approximate the far-field boundary conditions). By 
so doing, one may set up a propagating wave in the adjoint field which is the same as 
if the computational domain extended deep into the far field and the adjoint problem 
was forced a very long distance away. By varying the forcing along this line sinusoidally, 
one may simulate the arrival of a wave in the adjoint field corresponding to the effect 
on the far-field noise in any direction of interest. A representative example is given in 
Figure 8. Note that both reflection and refraction of the adjoint field are observed in this 
computation. 

3.5. Quantification of scattering of adjoint Green's functions 

In an attempt to quantify the scattering of a wave in the adjoint field due to the unsteady 
vortex roll-up, the values of the adjoint density and adjoint pressure have been measured 
at three different points in the representative adjoint Green's function analysis illustrated 
in Figure 9. The points where the adjoint density and adjoint pressure were measured 
are above the jet (where the scattering will be referred to as reflection), at the centerline, 
and below the jet (where the scattering will be referred to as refraction). The time series 
of these measurements were Fourier-transformed in time, and the results are plotted in 
Figure 10. The analysis was performed for adjoint forcing at three different Strouhal 
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FIGURE 9. Adjoint pressure wave corresponding to far-field noise at an angle of 60° off the jet axis and at 
a frequency of St = 2.0. The Fourier transform of this field evaluated at the three points indicated is shown 
in Figure 10. 

numbers: St = 0.8 (2x the vortex roll-up frequency), St = 2.0 (5x the vortex roll-up 
frequency), and 5f = 8.0 (20x the vortex roll-up frequency). 

Perhaps the most important observation to make in Figure 10 is that there is very 
significant frequency broadening in all of the adjoint spectra measured. The adjoint 
systems are excited by forcing at the single frequency indicated (St = 0.8, 2.0, or 8.0) 
but, due to the time-varying coefficients (from the unsteady flow field q) in the adjoint 
operator, the measurements of the adjoint field at the points indicated exhibit energy over 
a broad range of temporal frequencies. For comparison, the spectra of the hydrodynamic 
fiuctnations of the base flow is shown in Figure 11. Note that the frequency broadening 
of the adjoint field cannot be captured by a steady-flow analysis. 

The frequency broadening present when the adjoint field is forced at a high frequency 
is much larger than when it is forced at a low frequency. This fact was noticed by 
Suzuki (2001) for the direct problem, and was interpreted as "multiple scattering". In 
the present adjoint analysis, this suggests that high-frequfency noise may be modified by 
a broad range of possible forcing frequencies. 

Note in particular that the frequency spectrum is generally narrower at the point 
above the jet (dashed lines) than below the jet (dot-dashed lines), apparently because 
the refraction of the traveling wave in the adjoint field is stronger than the reflection of 
this wave for the incidence angle tested. Within the jet (solid line), it is observed that 
the frequency broadening is strongest. 

The low-wavenumber components of the spectra of the adjoint pressure at the cen- 
terline are especially strong for all three forcing frequencies tested. This indicates that 
low-frequency modulation of the hydrodynamic fleld via mass sources within the jet can 
have a significant impact on the high-frequency noise in the far fleld, and provides impe- 
tus for further studies in jet-noise control based on such characterizations to exploit this 
sensitivity. 

Note also that all of the spectra are somewhat jagged, and the distance between of each 
small peak in this jaggedness is A/ = 0.2D/U, which is exactly half of the vortex roll-up 
frequency. This appears to indicate (as one might expect) that the scattering of the wave 
in the adjoint field is closely related to its interactions with the large-scale vortex roll-up. 
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FIGURE 10. Temporal spectra of (left) the adjoint pressure p*f and (right) the adjoint density p*y for an 
incident wave in the adjoint field coming from above (at an angle of 60° off the jet axis), at a frequency of 
(top) St = 0.8, (middle) St = 2.0, and (bottom) St = 8.0 and measured at the points {x,y} of (solid) {5D, 0}, 
(dashed) {5D,2.5D}, (dot-dashed) {5D, -2.5D}. See Figure 9 for flow configuration. 

A second set of cases was also run in which the wave in the adjoint field approaches the 
jet at a 90° angle off the jet axis (cf. Figure 9). The results showed very similar trends, 
and are thus not included here. 
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FIGURE 11. Spectra of the vertical velocity of the flow at {x,y} = {\.5D,0.5D} (left) and 
{x,y} = {3D,0.5D} (right). The appearance of the peak at 5, = 0.2 at the downstream station (right) is 
a result of vortex pairing (recall that the jet is forced at Si = 0.4). 

4. Concluding remarks 
Perturbation and adjoint analyses of flow-acoustic interactions in an unsteady 2D jet 

have been performed. Attention has been focused on the scattering of adjoint Green's 
functions corresponding to far-field high-frequency noise. Significant scattering of the 
adjoint field is detected both above and below the jet, as quantified by a spectral analysis 
of the adjoint field. This scattering is a direct result of system unsteadiness (vortex roll- 
up) , and cannot be captured by mean flow analyses. 

TThe degree to which frequency broadening extends into the low frequencies within the 
jet in the adjoint analyses indicates the degree to which low-frequency alteration of the 
hydrodynamic field can be used to affect the high-frequency radiated acoustic field. This 
distinguishes promising low-frequency "hydrodynamic" control strategies from simple 
(but perhaps impractical) "antinoise" control strategies, which must be applied at the 
frequency of the radiated noise. 
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On the extension of the complex-step 

derivative technique 

to pseudospectral algorithms 
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1    Introduction 

The complex-step derivative (CSD) technique is a convenient and highly- 

accurate technique to perform a linearized "perturbation" analysis to deter- 

mine a "directional derivative" using a nonlinear simulation code. The tech- 

nique has previously been applied to numerical simulation codes (such as finite- 

element codes) which employ real arithmetic only. The present note examines 

the suitability of this technique for application to pseudospectral numerical 

simulation codes, which nominally use fast Fourier transforms (FFTs) to con- 

vert back and forth between real and complex representations of a system. It 

is found that, though this extension does indeed work, complex-to-complex 

FFTs combine the real and imaginary parts of the system, and thus the CSD 

approximation technique to compute the directional derivative presents no 

substantial numerical advantages over standard second-order finite-difference 

techniques when pseudospectral simulation codes and finite-precision arithetic 

are employed. 
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2    Background 

The idea of using complex variables in order to differentiate a function was 

(apparently) first mentioned in [1] and [2]. The applicability of this old tech- 

nique to differentiate a complicated function, such as that computed by an 

involved finite-element code, was recognized by [3]. Recently, the CSD tech- 

nique has become popular in aerodynamic optimization [4-7]. This approach 

has proven to be very accurate and easy to apply to finite-element and finite- 

difference simulation codes but, to the best of our knowledge, has not yet been 

extended to pseudospectral simulation codes. The present note explores the 

suitability of this extension 

2.1    The Finite-Difference (FD) approximation 

The directional derivative of a continous function J{4>) in the direction 0i is 

simply the amount J((/>) changes when (f) is updated in the direction ^i, scaled 

by the size of the update, in the limit that the size of the update approaches 

zero. It is denoted d = 'DJ{^)/'D4> • (pi- There are a variety of ways to calculate 

numerically this seemingly simple quantity. The most straightforward method 

to compute d is to consider a Taylor series expansion of the function J{(f)+e (j)i) 

near (/>, 

J{<1> + 6 <^i) = J{<l>) + e^^ • 4>i + 0[e% (1) 

from which a first-order finite-difference formula the directional derivative is 

easily obtained: 

,^W±lMz:W)^OW. (2a) 



Likewise, the second-order central finite-difference formula for the directional 

derivative is 

d=W+£M_l.^(izlM + 0(,2)^ (2b) 

and the fourth-order central finite-difference formula for the directional deriva- 

tive is 

d= _ +0{e). 

(2c) 

The drawback with these methods when calculating 0? using a finite-precision 

arithmetic computer is the difficulty in finding the most suitable value for 

the step size e. The accuracy of the numerical approximation of d is very 

sensitive to this value. When e is large, the Taylor-series truncation is not 

valid, and when it is small, subtractive cancellation errors become dominant 

(the so-called "difference-of-large-numbers" problem). 

To illustrate, the derivative of a scalar nonlinear function f{x) = ■;^= at 

X = 1 has been computed using the FD difference approximations given by 

truncation of the higher-order terms of (2a), (2b), and (2c) using both single- 

precision and double-precision arithmetic. Figure 1 shows that, for large e, 

the error of these FD approximations scales with e*^, where n is the order of 

truncation of the higher-order terms of the corresponding FD formulae. 

For small e, the error of all three FD formula in Figure 1 is 0(1/e) due to the 

"difference-of-large-numbers" problem mentioned previously. In other words, 

when comparing two numbers which are almost the same using finite-precision 

arithmetic, the relative round-off error is proportional to the inverse of the 

difference between the two numbers. That this must be the case is easily seen 

by example. Denoting with a question mark the first digit past the decimal 
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Fig. 1. Relative error of the derivative of f{x) = -|== at a; = 1 given by (solid) 
y Can J\. 

first-order, (dashed) second-order, and (dot-dashed) fourth-order finite-difference 

approximations and (circles-l-dots) the complex-step approximation using sin- 

gle-precision arithmetic (left) and double-precision arithmetic (right). Note that 

both plots have essentially the same shape. 

point that is unknown in a double-precision representation, we may write: 

1.0001111? -1.0000000? = 0.0001111? 
1.0000111? -1.0000000? = 0.0000111? 

and 

As seen in this example, if the difference between the two numbers is decreased 

by an order of magnitude, the relative accuracy with which this difference may 

be calculated is also decreased by an order of magnitude. 

2.2    The Complex-Step Derivative (CSD) approximation 

The CSD approximation makes use of complex variables in order to com- 

pute the directional derivative. If the complex extension J[z) of a real-valued 

function J{4') is analytic, it can be expanded with a complex Taylor series. 

In particular, the expansion of J{(j) + ie(j)i), where i = y/—i, may be written: 

Jicj> + ie(l>,) = Ji<P) + ie'^^ ■ <t>i - e'E, -ie'E, + Oi€%       (3) 



where Ei and E^ are real and are related to the higher-order derivatives of J. 

Taking the imaginary part and dividing by e gives a formula for the directional 

derivative: 

a^^^Jittil^} + 0{^)^ (4) 

note that the error in this formula is 0{e^) because the leading-order error of 

(3) is real. This method has the advantage that it does not face the problem 

of the subtractive cancellation error; that is, d is computed simply by taking 

the imaginary part of the complex number J{(j) + ie^i). 

To illustrate, Figure 1 also shows the error in the calculation of the derivative 

of the function f{x) = -^= using the CSD approximation (4). It is observed 

that, for large e, the error is 0{e^). This error is introduced by the truncation 

of the higher-order terms of the Taylor series in (4). 

For small e, on the other hand, the relative error of the CSD approxima- 

tion reaches an asymptotic value given by the machine precision. Thus, when 

the CSD method is applied to this test problem, any choice of the step-size 

(providing it is sufficiently small) gives a very accurate result. Similar results 

are also seen when the CSD approach is applied to much more complicated 

functions, such as the calculation of the drag of a wing using an involved finite- 

element code [6,7]. As the CSD technique is both highly accurate and quite 

easy to apply to an existing numerical code (simply convert all real variables 

in the code to complex and perturb the imaginary component of the control 

variable), it has become a popular technique for computing the directional 

derivative. 



3    Extension of complex-step derivative to pseudospectral codes 

Many codes in both fundamental turbulence research and numerical weather 

prediction are pseudospectral. In such codes, products are computed in phys- 

ical space, spatial derivatives are computed in Fourier space, and the con- 

version between these two representations is made efficiently with the fast 

Fourier transform (FFT). Pseudospectral techniques are essential for the ac- 

curate computation of spatial derivatives in multiscale fluid systems when 

marginal resolution is employed. Unfortunately, as pseudospectral codes al- 

ready employ complex arithmetic, direct application of the standard complex- 

step derivative method, as discussed above, is not possible. However, as the 

FFT is simply a linear manipulation of an otherwise real problem, the idea 

behind the CSD method is still valid. To implement the CSD method in a 

pseudospectral code, it is necessary to: 

(1) Convert all formerly real arrays into complex arrays. 

(2) Replace real-to-complex FFTs with complex-to-complex FFTs. 

(3) Double the size of all formerly complex arrays. When computing the 

FFT of a real function / (in one-dimensional, two-dimensional and three- 

dimensional problems), it is only necessary to store half of the Fourier 

coefficients, since the other half may be recovered by the identity /(k) = 

/*(—k). This identity no longer holds if / is complex. 

To illustrate the difference in accuracy between the FD and CSD methods 

when applied to a pseudospectral numerical code, both methods have been 

implemented on an artificial optimization problem in which the dynamical 

6 
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Fig. 2. Relative error of (dashed) first-order and (dot-dashed) second-order FD 

approximations and (solid) the CSD approximation of the directional derivative. 

Note that there is little substantial diflference between the overall performance of 

the CSD and second-order FD methods, 

system is governed by the nonlinear viscous Burgers equation 

du       du _   d'^u 

dt       dx       dx^ 

in the periodic domain x G [0,27r]. A pseudospectral technique is used to ad- 

vance the system in time from 0 to T, and the values i/ = 0.2 and T = 6 were 

used in the numerical simulation. The initial condition is given by u(0) = 

1 -I- 0.2 sin(3;) -|- 0.02 sin^(a; -l)-\-(j)sin(3; — 1), vi^here (j) is the "control parame- 

ter". The function of interest is defined as J{4>) = /o !li \u{x,t)\^ dxdt. The 

relative error of both the FD and CSD approximation of djjd^ at (?ii = 0 

is shovim in Figure (2). The exact value is obtained with a "direct" method, 

formed by writing a separate numerical simulation code (sometimes called a 

"tangent linear" code) which explicitly calculates the perturbation equation 

(for further discussion, see, e.g., [8]). As seen in Figure 2, for large e, the errors 

of both the FD and CSD approximations are seen to scale with e in a manner 

which is similar to the case evaluated in Figure 1. 



Unfortunately, for small e, the error of the CSD approximation in the present 

problem does not approach an asymptotic value, as it did in the problem con- 

sidered in §1. Instead, the error of the CSD approximation scales like 0{l/e). 

This is due to the fact that complex-to-complex Fourier transforms combine 

real and imaginary parts of the data. Thus, the large (real) and small (imagi- 

nary) numbers in this analysis are combined by the FFTs, leading to numerical 

inaccuracies which are comparable to the second-order FD approach. A sim- 

ilar behavior is expected (and has been obtained) when the CSD method is 

applied to other pseudospectral codes. 

4    Conclusions 

The present work has investigated the possible extension of the CSD technique 

to compute directional derivatives from pseudospectral numerical codes. It 

has been shown that, due to the fact that Fourier transforms combine large 

(real) and small (imaginary) numbers in such an analysis, the error of the 

CSD approximation of the directional derivative does not approach asymptotic 

value as the step size e is made small. The performance of the second-order FD 

approximation and the CSD approximation are found to be roughly equivalent 

for the model problem tested. As both techniques have approximately the same 

computational cost [that is, twice the cost of computing J{4')], the extension 

of the CSD method to pseudospectral algorithms is found to present little or 

no inherent advantages over the more standard second-order FD approach for 

such problems. 
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Abstract 

This paper examines the regularization opportunities available in the adjoint analysis and 
optimization of multiscale PDE systems. Regularization may be introduced into such op- 
timization problems by modifying the form of the evolution equation and the forms of the 
norms, duality pairings, and inner products used to frame the adjoint analysis. Typically, 
L2 brackets are used in the definition of the cost functional, the adjoint operator, and the 
cost functional gradient. If instead we adopt the more general Sobolev brackets, the var- 
ious fields involved in the adjoint analysis may be made smoother and therefore easier 
to resolve numerically. The present paper identifies several relationships which illustrate 
how the different regularization options fit together to form a general framework. Many 
commonly-used strategies for regularization, including implicit Tikhonov regularization 
and ad hoc smoothing of the gradient with the inverse Laplacian, are shown to fit into the 
present framework as special cases. The regularization strategies proposed are exemplified 
using a ID Kuramoto-Sivashinsky forecasting problem, and computational examples are 
provided which exhibit their utility. A multiscale preconditioning algorithm is also pro- 
posed that noticeably accelerates convergence of the optimization procedure. Application 
of the proposed regularization strategies to more complex optimization problems of physi- 
cal and engineering relevance is also discussed. 

Key words: Adjoint analysis, optimization, regularization, flow control, 4DVAR 
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1   Introduction 

Adjoint analysis forms a significant foundation for many applications of model- 
based control and estimation theory to nonlinear fluid systems, including: 

A) transonic airfoil shape optimization [1], 
B) optimization of open-loop control distributions for transitional and turbulent 

flow systems [2], [3], [4], [5], and 
C) state reconstruction and parameter estimation in numerical weather prediction 

(known operationally as "4D-VAR"). 
For recent general reviews we refer the reader to, e.g., Gunzburger [7] and Sritharan 
[8]. In order to apply adjoint analysis, an appropriately-defined cost functional is 
first expressed which represents mathematically the physical objective in perform- 
ing the computational optimization. In problem A, the objective is typically to max- 
imize the lift/drag ratio of the airfoil for a range of different cruise configurations 
while respecting a variety of practical "feasibility" constraints related to the con- 
struction of the airfoil. In problem B, the objective is typically to reduce drag, sur- 
face pressure fluctuations, or flow-induced noise or to reduce the kinetic energy of 
the flow perturbations in order to inhibit transition to turbulence, though in combus- 
tion applications the objective is typically the opposite—that is, to excite the flow 
with minimal control input in order to enhance turbulent mixing. In problem C, the 
objective is typically to reconcile the numerical weather model with recent weather 
measurements in order to obtain accurate weather forecasts. All of the above prob- 
lems in fact represent inverse problems, in which one seeks to determine inputs to 
the system such that the outputs will have desired properties. Once the control ob- 
jective is expressed mathematically as a cost functional, an appropriately-defined 
adjoint field may be used as a tool to determine an appropriately-defined gradi- 
ent of the cost functional with respect to the control variables. The adjoint field 
calculation is thus a central component of high-dimensional gradient-based control 
optimization strategies. Refs. [9] and [5] contain brief reviews of our perspective 
on a few of the relevant issues related to such problems. 

Even though the mathematical framework for adjoint-based optimization is fairly 
mature and has already been used successfully in a broad range of applications in 



Fig. 1. The field of adjoint density (grayscale) obtained at the end of the backward march 
in a 2D jet-noise optimization problem. The contour lines represent vorticity of the pri- 
mal flow. The arrow indicates the areas where the adjoint field reveals particularly rapid 
exponential growth at small length scales. (Simulation by Laura Cerviiio [private commu- 
nication].) 

fluid mechanics, many flow systems still present fundamental challenges to this 
approach. Due to their nonlinear nature, fluid-mechanical systems are often char- 
acterized by energetic motions over a broad range of length scales and time scales. 
Such multiscale systems present significant difficulties for numerical characteriza- 
tion. Adjoint analyses of such flows must be crafted with care in order to be well 
behaved over this full range of scales. Inverse problems are often ill-posed in the 
sense that multiple solutions which locally minimize the relevant cost functional 
exist, and the solution found by the optimization algorithm does not necessarily 
have a continuous dependence on the data provided. For instance, in numerical 
weather prediction, the problem of finding the future state of the nonlinear model 
based on past measurements is often ill-posed in this regard. In such problems, 
errors magnify exponentially in time in the linearized ("perturbation") analysis. In 
the iterative numerical solution of such an inverse problem in the nonlinear setting, 
a small change in the data provided (the measurements) can sometimes lead to a 
large change in the forecast. Even in the control of laminar flows, adjoint fields 
typically grow exponentially when they are calculated (in reverse time), and can 
thus be exceedingly difficult to resolve in regions where flow perturbations amplify 
quickly, such as in thin shear layers. The rapid growth of an adjoint field calculation 
in such regions is illustrated in Figure 1, which shows the adjoint density obtained 
near the end of the backward march in a jet-noise optimization problem. 

The presence of a broad range of interacting length- and time-scales thus compli- 
cates an adjoint-based analysis of a nonlinear multiscale system by causing diffi- 
culties of twofold nature: on the one hand, the dependence of the solution on the 
data in such cases is irregular, resulting in the presence of many local minima of 
the cost functional; on the other hand, the various fields involved in an adjoint anal- 
ysis are not smooth and therefore difficult to resolve numerically. These two issues 
are related, and may be addressed, at least partially, by considering the regularity 



of the various fields involved in the analysis of such systems. We therefore define 
the term regularization rather broadly in the present work as a reformulation of an 
adjoint-based algorithm in such a manner that at least some of the fields involved in 
this analysis are more "smooth", in the sense that the energy in these fields decays 
more rapidly with wavenumber at the length scales of concern from the perspective 
of a numerical implementation. Such regularization will thus render a given opti- 
mization problem more amenable to numerical treatment, and may sometimes turn 
an initially ill-posed problem into a well-posed problem. A more narrow defini- 
tion of the term regularization is often adopted in the precise mathematical study 
of ill-posed inverse problems (see [10], [11], and [12]); however our broader usage 
of the term is adequate for the present investigation. 

Though great attention has been paid to the appropriate treatment of subgrid-scale 
effects in the numerical simulation literature, much less is known about how to 
address the multiscale nature of fluid-mechanical systems in adjoint analysis. The 
central issue is that norms, duality pairings, and inner products, collectively to be 
referred to in this paper as "brackets", are implied, if not explicitly stated, at three 
distinct steps of the derivation of an adjoint analysis. Each of these brackets implies 
a relative weighting between the various length scales and time scales in the rela- 
tionship expressed. "Traditional" approaches have typically selected Li brackets at 
most, if not all, of these steps in the adjoint formulation. However, this choice is by 
no means unique. Other choices are sometimes more appropriate when the system 
must be solved on a computer with finite-precision arithmetic using a discrete nu- 
merical grid in both space and time. Modifying the definitions of the three brackets 
used to frame the adjoint analysis facihtates a range of distinct but related regular- 
ization opportunities. Capitalizing on these regularization opportunities can result 
in significantly smoother space-time systems requiring numerical approximation in 
the adjoint analysis, thus leading to faster convergence, greater numerical stability, 
and improved accuracy in marginally-resolved numerical approximations of multi- 
scale fluid systems. The purpose of the present paper is to clarify these important 
regularization opportunities and to illustrate how they may be used in concert to 
increase the speed, stability, and accuracy of adjoint-based numerical optimization 
algorithms. 

The possibility of achieving a regularizing effect through modification of some of 
the brackets used in the derivation of an adjoint algorithm was already recognized 
by Collis et al. [13]. A similar set of ideas, but in the finite-dimensional setting, 
was earlier suggested by Heinkenschloss & Vicente [14]. Other approaches ex- 
plicitly addressing data assimilation in multiscale environments include the works 
of Liu [15], Brandt & Zaslavsky [16], Grimstad & Mannseth [17], and Brusdal 
& Mannseth [18]. In particular, [15] and [18] invoke the concept of "basis norm 
rescaling," which is further elaborated here. Multigrid approaches to optimization 
problems were studied by Lewis & Nash [19]. Similar ideas also appear in the 
Numerical Weather Prediction (NWP) literature: e.g., Lorenc [20] discussed per- 
forming optimization with respect to a rescaled variable, whereas Thepaut & Moll 



[21] recognized the possibility of using various inner products to precondition the 
adjoint algorithm. An adaptive method to enforce smoothness constraints in data 
assimilation was recently presented by Lin et al. [22]. In the present study, we 
attempt to synthesize these various regularization opportunities into a comprehen- 
sive framework and characterize the interplay between the various definitions of the 
brackets upon which adjoint analyses are based. We believe that the present work 
represents the first time that a "comprehensive" framework for the reformulation 
of adjoint analysis has been obtained, as the present paper characterizes flexibility 
in the definition of the duality pairing which, apparently, has not previously been 
exploited in numerical simulations. 

To make this study concrete, the bulk of the paper illustrates how these regulariza- 
tion techniques may be applied to a Kuramoto-Sivashinsky model system. This ID 
model problem illustrates self-sustained chaotic behavior of a multiscale nature, 
and thus provides an appropriate testbed for the present study. The Kuramoto- 
Sivashinsky equation was used successfully as a low-dimensional prototype for 
complicated fluid systems by Holmes, Lumley & Berkooz [23]. In fact, many ad- 
vanced flow control strategies were initially investigated using similar ID models; 
see, e.g., Choi et al. [24], Kunisch & Volkwein [25], and Atwell, Borggaard, & 
King [26]. 

In §2 we identify and discuss in general terms the four fundamental classes of reg- 
ularization opportunities available in the framing of an adjoint analysis. As a point 
of reference, the standard optimization framework for the Kuramoto-Sivashinsky 
model is formulated in §3. The different regularization possibilities available in 
framing the adjoint analysis, and interrelationships between these different formu- 
lations, are discussed in §4, and some numerical examples are presented in §5. 
Several extensions of this study are also underway, and are briefly introduced in 
§6. Concluding remarks are presented in §7. 

2   The four fundamental classes of regularization opportunities 

The objective of the present research effort is to develop a comprehensive frame- 
work for understanding regularization issues in the adjoint analysis of unsteady 
PDE systems. In the adjoint-based optimization of PDE systems in general, there 
are three spatial domains of interest: the domain on which cost functional is defined, 
which we denote i^i, the domain over which the state of the system modeled, which 
we denote ^2, and the domain on which the control is applied, which we denote Q.^. 
In an unsteady problem, the system model is defined on ^2 over some time interval 
[0, T]. The cost functional which measures this model on Q.] may average over the 
interval [0, T], as in "regulation" problems, or may focus the attention on the state 
at time T, which is called a "terminal control" problem. The control on ^3 can also 
be defined over [0,7], when an unsteady control distribution is sought, or may be 



nonlinear state equation 

cost functional gradient extraction 

T 
duality pairing 

Fig. 2. The four essential components of the adjoint-based optimization process. As out- 
lined in the text, each component of this process is associated with a distinct opportunity 
for regularization. 

defined at time t = 0, as done in the forecasting problem (where the "control" is 
actually the initial condition). In the process of adjoint-based optimization, brack- 
ets are used (or implied, if not explicitly stated) on all three of these space-time 
domains. 

In the continuous setting, the form of each of these three brackets may incorpo- 
rate either derivatives or "anti-derivatives" in both space and time. Mathemati- 
cally, these brackets are related to the natural measures for functions defined in 
the Sobolev space HP{0, T;W{Q.i)), where q is the differentiability order in space, 
p is the differentiability order in time, and £li denotes the spatial domain. Note that 
Sobolev brackets with negative differentiability indices can also be considered in 
this framework by taking p and/or q negative. Such brackets are natural alterna- 
tives to the L2 bracket when considering functions of different degrees of regularity 
in both space and time. How each of these brackets is defined, in addition to any 
smoothing that might be applied to the state equation itself, has important conse- 
quences on the smoothness of the several variables in the optimization problem, as 
summarized in Figure 1. As a shorthand, we use ^i, ^2. and ^3 to identify the 
brackets selected for the three space-time domains of interest in this problem. 

The first regularization opportunity is given by adding an artificial (but well-motivated) 
term to the discretized state equation itself. Two common examples are dynamic 
subgrid-scale models (in turbulence research) and hyperviscosity (in numerical 
weather prediction). Addition of such a term to the numerical model is useful for 
tuning the behavior of the numerical model at the unresolvable scales, and can be 
used to make a system well-posed if it is not otherwise. In addition to modifying 
the actual governing equation, we can also consider its different derived forms (e.g., 
the vorticity form instead of the velocity-pressure form of the Navier-Stokes equa- 
tion). These different yet equivalent forms may serve to focus on different aspects 
of the dynamics in numerical simulations and adjoint analyses thereof. 

The second regularization opportunity is given by the definition of the cost func- 



tional. As mentioned previously, the cost functional can take any of a wide variety 
of forms depending on the problem under consideration. However, in most such 
formulations, the cost functional involves the norm of a flow quantity taken over 
some subdomain of the space-time domain under consideration. Selecting for this 
purpose a norm ^i which incorporates either derivatives or anti-derivatives, instead 
of using the standard Li norm, effectively builds in a "filter" into the definition of 
the cost functional, thereby allowing extra emphasis to be placed on certain scales 
of interest in the multiscale problem. Note that the cost functional may also incor- 
porate a term penalizing the magnitude of the control on Q.^,, using an appropriate 
norm, in order to limit the magnitude of the control that results from the optimiza- 
tion^ . Such an approach is known as Tikhonov regularization [27]. Analysis of 
the effect of this additional term on the regularity of the optimization algorithm is 
deferred to §4.5.5. 

The third regularization opportunity is given by the form of the duality pairing, 
which is used to define the adjoint operator and, ultimately, the adjoint field itself. 
Incorporating derivatives or anti-derivatives into the definition of the duality pairing 
^2, instead of using the standard Li duality pairing, can be useful to obtain well- 
behaved (that is, numerically tractable) adjoint operators. 

Finally, the fourth regularization opportunity is the definition of the inner prod- 
uct used to extract the cost functional gradient. Incorporating derivatives into the 
inner product ^3, instead of using the standard La inner product, has the effect 
of scale-dependent filtering, and allows one to extract smoother gradients, thereby 
preconditioning the optimization process. 

In this paper we present a comprehensive framework for regularizing various as- 
pects of the adjoint-based optimization process. Though adjoint-based optimization 
has already seen a broad range of applications in fluid mechanics, understanding 
the interplay between these various regularization opportunities appears to be very 
important when applying such techniques to difficult multiscale problems of both 
physical and engineering interest, such as high Reynolds-number turbulence. 

3   Forecasting a Kuramoto-Sivashinsky system: the standard framework 

In this section, we first describe three different yet equivalent forms of a dynamically- 
rich ID model system governed by the Kuramoto-Sivashinsky equation, then out- 
line a relatively standard adjoint-based algorithm for the forecasting of this system 
based on limited noisy measurements. In the section that follows, we illustrate, in 
turn, the application of the four regularization opportunities summarized above. 

'  Note that inclusion of such a term is sometimes, but not always, necessary to insure that 
the optimization problem has a bounded solution. See [5] for further discussion. 



The Kuramoto-Sivashinsky equation ([28], [29]) has been widely studied due to 
its chaotic, pattern-forming behavior. Out of the several different normalizations of 
the parameters of this system which are available in the literature, we have selected 
the one proposed by Hyman and Nicolaenko [30], in which the system is written 

a;M+4a^M+K a2M+-(a;tM)^ =o,   xea,te[o,T], 

u{x,0) = \)/, 

te[0,T], i = 0,...,3, 
XGQ., 

(1) 

where we define 9^ = j^. Integrating this system over the domain Q. = [0,2%], the 
evolution of the mean of u is given by d, JQ^udx = -(K/2) /Q^ {dxu) dx y^ 0. For 
this reason, it is common to transform the system (1) into a different form, which 
is achieved by first differentiating it with respect to x and then re-expressing it in 
terms of a new variable v = 9VM such that 

'dtV + 4d'lv + K{dlv + vdxv)=0,     xe^, tG[0,T], 

d'X0,t) = d'X'2%,t), te[0,T], j = 0,...,3, 

^ v(x, 0) = dx^^ = (t>, X G n. 

(2) 

This is the form of the Kuramoto-Sivashinsky system that is studied most often. 
As V = dxU and u is periodic in x, it follows immediately that fQ^vdx = 0 for all 
t. The variable u can be recovered from v by inverting the differential operator dx 
and accounting for the mean of u properly. For this purpose we define the "anti- 
derivative" operator 3~' such that 

lit fX 1        [■I'K    fS 

Note that the constant is selected such that ^l^'^x '^W ^^ = 0- Using this operator, 
we may recover u from v with 

uix,t) = d;\{x,t) + ^J^   y^{x')dx'--jj^   W,t')fdnt'. 

Yet another form of the Kuramoto-Sivashinsky system can be obtained by further 
differentiating the system (2) and defining w = dxV 

' a,w+43>+K \b\w+3;, (vw)] =0, X e ri, ? G [0, r], 
w^'bxv, xeQ., te [0,T], 

a>(o,o = a>(27t,o, tG[o,T], / = o,...,3, 

^ w{x, 0) = 3j;(j) = 9, X G il. 

(3) 

We observe that this formulation contains both v and w, with the relation between 
these variables serving as a constraint on the system. Note that we may recover v 



from w with the simple expression 

v(x,t) = dj^w{x,t). (4) 

We may thus simplify the expression of the system (3) by substitution of (4) to 
eliminate the variable v. In the derivations to come, we will primarily focus on 
system (2), which we will dub the primitive formulation. By analogy with the 
equations of fluid dynamics, we will refer to the integral form (1) as the stream- 
function formulation and the derivative form (3) as the vorticity formulation of the 
Kuramoto-Sivashinsky system; the same qualifiers will be used with regard to the 
corresponding variables. 

In the above equations, K is the order parameter, and its meaning is similar to the 
Reynolds number in fluid systems, as it may roughly be considered as the ratio of 
the convective and dissipative effects at the characteristic length scales of the sys- 
tem. All three forms (1), (2), and (3) are forced by destabilizing second-order anti- 
diffusion terms, and the nonlinear terms redistribute energy to the higher wavenum- 
bers, where it is eventually dissipated by stabilizing fourth-order diffusion terms. 
Looking at the system dynamics over a range of different values of K, it is seen 
for low values of K that intervals of K corresponding to chaotic solutions are inter- 
woven with intervals of K in which the solution approaches a fixed point; as K is 
increased, the latter intervals become vanishingly small. For values of K selected 
in the former intervals, the unsteady dynamics of the Kuramoto-Sivashinsky sys- 
tem is self-sustained, that is, the system does not require external stochastic forcing 
to excite an interesting multiscale behavior. The self-sustained chaotic solutions 
of this system are characterized in physical space by what might be described as 
a jittering array of oscillatory bumps which are created and annihilated in a deter- 
ministic fashion that is highly sensitive to small disturbances. Links of this equation 
with dynamical systems theory are discussed by Hyman & Nicolaenko [30]. The 
weak formulation of the Kuramoto-Sivashinsky equation, its associated functional 
setting, and a characterization of its chaotic attractor is discussed by Temam [31]. 

We now review the relatively standard framework for adjoint-based data assimila- 
tion in PDE systems. As mentioned previously, adjoint-based data assimilation is 
commonly used for state estimation and forecasting based on limited noisy mea- 
surements in multiscale PDE systems, such as in the forecasting the Earth's weather. 
In the present work, we will discuss the regularization of the adjoint analysis at the 
heart of such an optimization problem by focusing on an admittedly contrived, yet 
dynamically rich, ID model forecasting problem based on the Kuramoto-Sivashinsky 
system discussed above. Extensions of these approaches for the regularization of 
adjoint analyses in more realistic forecasting and control problems in fluid mechan- 
ics are discussed in §6. 

In the model problem to be considered, the three spatial domains Qi, / = 1,2,3, 
mentioned in the previous section happen to coincide. Note that this will not neces- 
sarily be the case in general (cf. §6.2). More precisely, the "control", which is taken 



to be the initial condition (j) in this problem, is defined on ^ = [0,2%] at time ^ = 0, 
whereas both the system evolution and the cost functional are defined on H x [0, T]. 
We begin by first defining the norm 

^ /    /    z^dxdt, (5) 
Jo Jo 

2 .    /-r   fin 

L2{0,T-M{a)) 

and then attempting to minimize the cost functional 

1 2 
_7((t)) = -  0<v-y ,       where      y = !N:V'"''+T], (6) 

v"^' is the "actual" state (which is unknown to the forecasting algorithm), and v is 
the "reconstructed" state, which is assumed to be related to the initial state (|) (the 
quantity to be determined in the reconstruction problem) via the primitive form (2) 
of the Kuramoto-Sivashinsky system. Note that 9{ denotes the "observation" oper- 
ator, y denotes the corresponding noisy measurements taken of the system, and r\ 
denotes the measurement noise. The problem to be solved is to find the initial state 
(j) in the reconstruction problem which will minimize J, thereby minimizing the de- 
viation of the measurements from the corresponding quantities in the reconstructed 
system. 

The observation operator i^ which we have selected for this model problem is 
based on the cosine decomposition of the flow system. To define ^, we will make 
use of a linear projection operator !P^ defined such that 

\\    r2TZ 
<p^z=\-       cos(rx')z{x')dx' 

\T^Jo 
cos(rx). (7) 

Note that the projection operator so defined satisfies fP^ = 2^. We now define the 
observation operator as 

^=Z^r, (8) 
reAr 

where A^ is the set of modes which we choose to observe. 

For J7((|)) to be minimized by ^, it is necessary that, in the immediate neighborhood 
of (]), the perturbation f of the cost functional J that arises from perturbations £(])' to 
the control distribution ^ vanish for all feasible directions (J)' as e is made small. To 
be precise, the quantity J'{^; ^') is defined by a limiting process as the differential ^ 
of the cost functional J with respect to (|) such that 

y(^;^,')4,in,M±f!KWM. (9) 
e-^0 e 

^ In the present work we assume that J?((j)) is sufficiently smooth that it is Frechet differ- 
entiable. 
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To summarize, if i(<l)) is minimized by ([), then !)'{fy, ^') = 0 for all feasible (|)'; this is 
referred to as the first-order necessary optimality condition for the present problem. 
Higher-order differentials may also be considered (namely, the second-order suf- 
ficient optimality condition), however, we will not make use of such higher-order 
expressions in this paper. 

The differential of the cost functional defined in (6) can now be calculated in the 
neighborhood of some state v{^), which yields 

/((]);(])')=/    /    {0{v-y):Kv'dxdt, (10) 
Jo Jo 

where, by linearization of (2), it follows that v'((|); (j)') is the solution of the system 

Lv' = 0, xeQ,te[0,T], 

ay(0,0 = 9y(271,0,     te[0,T],  i = 0,...,3, (11) 
v'{x,o) = (?', xeci, 

where the linear operator L is 

Lv' 4 dtv' + 43^' + K [dlv' + vd,v' + (d^v) v'] (12) 

and v((j)) is the solution of (2). Note that, as was the case with v, it follows immedi- 
ately that JQ^ v'dx = 0 for all t. 

Numerically, the optimal initial state <j) and the corresponding evolution of the sys- 
tem V cannot be determined solely from the mathematical statement of the first- 
order necessary optimality condition, that is, the vanishing of the differential of the 
cost functional at the optimum distribution of (j) for all feasible ^'. A stable numer- 
ical procedure to find such a minimum of J{<^) even when no good initial guess of 
the optimum controls is available (which is quite often the case) is to use an itera- 
tive gradient-based optimization procedure: given some initial guess ^Q for the ini- 
tial conditions (j), consecutive refinements (j)^") are computed using a gradient-based 
optimization algorithm ^ until convergence to a (local) minimum of J is obtained. 
In order to apply such a gradient-based optimization procedure, we need somehow 
to define a gradient in the space of the control distributions. This is accomplished 
by identifying the differential (10) as an appropriately-defined inner product'^ of a 
quantity, which we will denote Vj7, with the control perturbation ())'. The quantity 

^ In such high-dimensional optimization problems, quasi-Newton methods are becoming 
increasingly popular. Such approaches approximate some of the information contained in 
the Hessian or inverse Hessian by intelligent use of the recently-computed gradient vec- 
tors, thereby accelerating convergence (see, e.g., Nocedal and Wright [32]). The concepts 
discussed in this paper appear to extend to such optimization algorithms; such extensions 
will be considered in future work. 
^ A representation of the bounded linear functional f in the form of an inner product, as 
given in (13), is guaranteed by the Riesz Representation Theorem [33]. 

11 



Vj7 so defined represents the rate of change in j when ^ is updated an infinitesimal 
amount in the direction (])'. We thus identify Vj7 as a gradient in the space where the 
metric, which effectively defines angles and distances, is given by the inner product 
selected. Significantly, note that different choices of this inner product will result 
in different gradients of j/ for a particular value of the control distribution (j). How- 
ever, for convex J/, all such definitions of the gradient eventually lead to the same 
minimizer (that is, the optimal value of ([)), at which Vj? = 0 regardless of the inner 
product used to define the gradient. 

The most common choice for the inner product used to extract the gradient Vj from 
the expression for j' is the L2 inner product and, for the time being, our derivation 
is performed using this inner product, that is 

^'=(^^'^')w.)=r(^^)^''^- (13) 

In order to identify Vj7, we first need to transform the expression (10) into a form in 
which the control perturbation ^' is factored out in a convenient manner, as shown 
above. Note that v' is related to (j)' through the involved yet linear relationship (11). 
To accomplish this factorization, we introduce a new bracket, which we will refer 
to by the special name of a duality pairing 

{z\,Z2^ 
L2{0,T-Mm 

i-T    rlTt 

—        /    ZMidxdt. 
Jo Jo 

(14) 

Based on this duality pairing, we may derive an adjoint operator L* and a corre- 
sponding boundary term b^ from the following identity 

(v*,Lv') =(L*V*,V') +bj:. (15) 
L2{0,T;L2{Sl)) 

Using integration by parts and the definition of L given in (12), it follows that 

L*v* = -dtV*+Ady + yi{dlv*-vdy),     and (16) 
■ fin y=T      (   r 
/    v*y/dx       +{ / 4 

+ K 
•4 x=2% 

v*ay-(3;cv*)v'+v*vv'^4 
•'      ) x=0 

Making use of the adjoint operator derived above, we may now define an adjoint 
system in the following (as yet, arbitrary) manner 

ay(o,o = 3iv*(271,0,     t^[o,T], /=o,...,3, 
v*{x,T)=0, xeSl, 

(17) 
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where iH* is defined in a manner analogous to L* in (15), and thus it is easy to 
show that ^H is self-adjoint (that is, that !}{* = !>{). We will refer to (17) as the 
primitive adjoint system and to v* as the primitive adjoint variable. To see why the 
adjoint state so defined is in fact useful, we now combine the state, perturbation, 
and adjoint systems [(2), (11), and (17)] into the identity given in (15). Note that all 
the boundary terms in b£ resulting from integrations by parts in space vanish due 
to periodicity ^ . Due to the clever choice of the RHS forcing term in the adjoint 
system (17), we may use (15) to re-express the differential given in (10) in the 
desired factored form 

y((t,;(t)')= Pv*       iSf'dx=U\     ,(t)')        , (18) 

where v* denotes the solution of the adjoint problem defined in (17). Finally, note 
that the mean of the adjoint field defined by (17) is not zero, yet all feasible ^' under 
consideration have zero mean mode. Because of this restriction on the class of ([)' 
under consideration, (18) is in fact equivalent to 

where the overbar implies that the given variable has the mean mode removed, that 
is, 

1      /■2t 
z = z-—       zdx. (20) 

2% Jo 

Note that v* denotes an "orthogonal projection" with respect to the inner product 
(13) of the adjoint variable v* onto the space of feasible (j)'. Thus, the gradient which 
we seek in the space of feasible ([)', as indicated in (13), may now be identified as 

Vj/ = v (21) 

The gradient so defined can now be used to find the optimal feasible initial condi- 
tion using any of a number of standard gradient-based optimization algorithms. 

4   Regularizing the Kuramoto-Sivashinsky forecasting problem 

In the subsections that follow, we discuss how the regularization opportunities in- 
troduced in §2 can be applied to fine-tune the adjoint algorithm outlined in §3 
to better treat multiscale phenomena. In this discussion, we will first investigate 

^ Without further mention, we will make use of this fact in many of the transformations to 
follow. 
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adjoint analyses based on the different yet equivalent forms (1) and (3) of the gov- 
erning equation (2). We will then consider a variety of alternative definitions of the 
three distinct brackets at the heart of the adjoint formulation, as outlined in §2 and 
listed in the above "standard" formulation as 

• the norm || • H*?, in (5), which is used to define the cost functional, 
• the duality pairing (•, •)\p2 in (14), which is used to define the adjoint operator, 

and 
• the inner product (•, •)<i'3 in (13), which is used to define the gradient. 

Note that, in the standard formulation given in §3, L2 brackets over the appropriate 
space-time domains were used in all three cases. In the subsections to come, we 
will discuss at length the effects of various different choices for ^], ^2, and ^3. In 
particular, we will make extensive use of H^ brackets of the form 

2 rT   flTl 

= /    /    (dU?dxdt, (22a) 
L2{0,T-Hi{Ci)) Jo   Jo 

T   r2n 

(^"^0«.,a, ^|y.^M^!z^)d., (220 

where //^ denotes the Sobolev spaces where these brackets are commonly used 
(though we will not make use of any of the sophisticated mathematical machinery 
of functional analysis in Sobolev spaces). For simplicity, we will restrict our at- 
tention to the cases with q = 0 and ±1, though higher-order derivatives may also 
be considered. Note that the special case ofq = 0 reduces the if^ brackets defined 
above to the L2 cases considered previously, as defined in (5), (14), and (13). Also, 
the present paper will focus on brackets incorporating spatial derivatives only. For- 
mulation generalizing the bracket definitions to include time derivatives as well as 
space derivatives is also possible, and is discussed briefly in Appendix A. Finally, 
note that it is straightforward to extend these bracket definitions by taking linear 
combinations of the H'^ brackets for various values of q. This fact was recognized 
previously in [5] for the purpose of extending the definition of the norm used in 
the cost functional, thereby focusing the cost functional on the particular range 
of length scales of interest in the system under consideration. In the present work 
(in §4.4), we will develop this extension further by demonstrating how it may be 
applied to the definition of the inner product used to extract the gradient, thereby 
preconditioning the optimization process in a tunable manner. In this discussion, 
the following inner product, defined as a weighted linear combination of the L2, 
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H^, and H ^ inner products, will be used heavily 

/272 1 

^2^ (a.zi) (a.z2) + ^2^^ (a.-'zi) (aj^^2)] dx.      (23) 

The justification for the specific choice used above for the coefficients weighing the 
three terms will become apparent in §4.4. Taking the appropriate limits as l\ and 
/_] approach zero and infinity, it follows that 

The form (zi, Z2 I        is thus a linear combination of the L2 and H^ inner products, 

whereas (21,22)   0;    ^^ ^ linear combination of the H^^ and L2 inner products. 

We will use the symbols W''''-', w'^'°° and W°''-' to refer to these different inner 
products. Symbols representing the spatial components of the different brackets 
will be used as superscripts to identify the way in which the different objects (that 
is, the cost functional, the adjoint operators with the associated adjoint variables, 
and the cost functional gradients) are constructed. When such symbols are omitted, 
L2 brackets are implied (see §3). 

4.1    The adjoints of alternative forms of the evolution equation 

As indicated in (1) and (3), by applying integral or differential operators to the gov- 
erning equation in the primitive form (2) and suitably redefining the state variable, 
we obtain a family of systems representing the same conservation law, but empha- 
sizing different aspects (length scales) of the system dynamics. Needless to say, all 
of these systems are formally equivalent. However, they are characterized by differ- 
ent energy spectra, and thus some of these systems are easier to compute accurately 
than others when marginal resolution is employed. We can further expect that the 
adjoint operators derived from these equations might be different as well, with some 
forms possibly being easier to compute than others. In this subsection, we present 
two alternative forms of the adjoint operator using the standard L2 brackets in all 
three steps of the adjoint derivation, essentially reproducing the "standard" deriva- 
tion of §3, but applying it to the streamfunction and vorticity forms of the gov- 
erning equation presented in (1) and (3). The subsequent three subsections discuss 
the effects of choosing alternative forms for the three brackets used in the adjoint 
derivation. A detailed summary of the inter-relationships between these options is 
presented in §4.5. 
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4.1.1    The standard adjoint derivation based on the vorticity formulation 

We now proceed to minimize the original cost functional (6) by modeling the sys- 
tem evolution with the vorticity form (3) of the Kuramoto-Sivashinsky system. 
Specifically, we consider a cost functional written in the form 

hi"^) = 7, Oi'6-^ \ w-j 
Ia(0,r;La(n)) 

(24) 

Note that, as B^V = v, Svf is equivalent to 3, but depends on the control variable 
(p = 3^(|), that is, j/(p(3;c(l)) =3{^)- The differential of this cost functional can now be 
expressed as 

rT   /•27t 

X(9;9') = -^ I   [a;ii^*(:7/a;V-3')]w'JxJ^ (25) 

where integration by parts was used to reveal explicit dependence of J'^^ on the 
vorticity perturbation w'((p;(p'). The boundary terms obtained as a result of this 
transformation vanish due to periodicity of all the variables involved. The field vJ 
satisfies the system obtained by linearizing (3) 

a>'(o,0 = 3>'(27c,f),   ^e[o,r], j = o,...,3, 
w'(x,0) = (p', XGH, 

(26) 

where the linear operator 9^ is 

UJ = dtw' + 4a>' + K (a>' + 2ww' + a-i w' d^w + d-^wd^w') (2?) 

and w(<p) is the solution of (3). By an identity of the same form as (15), that is, 

'L2{Q,T-Mm) 

it follows [cf. (16)] that 

(28) 

fj^*w* = -dtw*+4a>*+K [dlw*+a-' (wd^cw*) - a-Va^w*], 

^M 

■\t=T 

w w dx + 
J/=0 

x=2n 

x=0 

Making use of this adjoint operator, we define the vorticity adjoint system [cf. (17)] 
with 

aX(o,o = aX(27t,o, tG[o,T], i = o,...,3, 
w*{x,T) = 0, xeQ.. 

(29) 
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Defining the gradient Vj/q, such that 

it follows by an analogous derivation that 

(30) 

Vi,p = w' 
t=Q 

(31) 

where the projection operator implied by the overbar is defined as in (20). 

4.1.2    The standard adjoint derivation based on the streamfunction formulation 

We may also minimize the cost functional (6) by modeling the system evolution 
with the streamfunction form (1) of the Kuramoto-Sivashinsky system. Specifi- 
cally, we consider a cost functional written in the form 

M'^) = i^^^xu-y 
i^ioj-Mm 

(32) 

If we restrict Xf to have zero mean mode, then it follows that \)/ = 3^'(j). Noting 
that dxU = V, it is seen that j-^ is equivalent to j, that is, J/\i;(3^V) = HW)- The 
differential of J/^ is 

Kir,V) = -J   J     [dx^*{:Hd,u-y)]u'dxdt, (33) 

where, by linearization of (1), it follows that M'(\|;; V) is the solution of the system 

< ay(o,0 = 3>'(27t,f),   ^e[o,r], / = o,...,3, 
M'(X,0) = \|/, XEQ., 

where the linear operator 1^ is 

%u' ^ d,u' + 4a^M' + K [dlu' + (d^u){d,u')] 

and M(\|r) is the solution of (1). By the identity 

(u\!Ku') =(9Cu*,u') 
\ /L2(0,r;L2{"))       \ / L2{0,T;L2{n] 

it follows that 

gCu* = -dtU*+4d^u* + K[dlu* -dx{u*djcu)] 

(34) 

+ b^, 

(35) 

(36) 
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Making use of this adjoint operator, we define the streamfunction adjoint system 
with 

' X*u* = -d,9<*{^d,u-y),    xGa, te [o,r], 
< ax(0,0 = 9X(271,0, te[QJ], j = 0,...,3, 

M*(x,r) = o, xeD.. 

Defining the gradient Vj/^ such that 

it follows that 

'L2(n) 

VJV = «* 

(37) 

r=0 

(38) 

(39) 

4.2    Targeting the cost functional 

As indicated in (22a), the definition of the cost functional may be generalized by 
taking the W norm (rather than the L2 norm) of the quantity of interest (in the 
present case, the measurement misfit). By so doing, we can focus the cost functional 
on a particular range of length scales of interest. For example, taking the //' norm 
[see (22a)] of the misfit of the measurement y, we define [cf. (6)] 

f\<^)=   9{v-y 
L2[GJ;H\a)) 

(40) 

It is straightforward to show that the only modification to the standard formulation 
of the adjoint analysis which results from this change in the cost functional is the 
right-hand-side forcing of the evolution equation for the associated adjoint field, 
which now takes the form [cf. (17)] 

L\* = -dl^\^v-y) = -dlf. 

r-l Similarly, taking the H  ' norm of the misfit of the measurement y, we define 

2 

L2.{(i,T;H-\Q)) 
f ((|))=   9{v-y (41) 

The modification of the right-hand-side forcing of the adjoint field in the standard 
formulation which results from this change in the cost functional is 

L*v* = -d;'^*{^v-y) = -d-'f. 
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4.3   Modifying the duality pairing 

As indicated in (22b), the definition of the adjoint operator may be generalized by 
using an H'^ duality pairing rather than the standard L2 duality pairing. By so do- 
ing, we may determine the same gradient of the same cost functional as found by 
the standard adjoint framework, but do so via an adjoint system with a substan- 
tially different energy spectra which makes it more or (preferably) less difficult to 
compute accurately on a marginally-resolved space-time grid. 

4.3.1   An adjoint derivation with the H^ duality pairing 

We again proceed to minimize the original cost functional (6) by modeling the 
system evolution with the primitive form (2) of the Kuramoto-Sivashinsky system, 
but now derive the adjoint operator with an H^ duality pairing via the identity 

(v*'"' ,Lv') = (L*'"' V*^"' ,V') +bu (42) 
\ / L2{QJ\H\a))       \ / L2{0,T;H\Q.)) 

from which it follows that 

x*.»'v*.^' = -a,v*'^' +49>*'^' +K[a2v*'^' -a;2(va>*.^')], (43) 

b^ = \j^\dy^"'){d,v')dx 
t=T 

+ 
f=0 

-\X=2K 

x=0 

Making use of this adjoint operator, we define an adjoint system with 

L*'"\*'"' = -d-^;K*{!H:v-y) = -d;^f,    xeCl, te[0,T], 

d[v*'"\0,t) = d[v*'"\2%,t), 

V*'" {x,T) = 0, 

te[0,T],  i = 0,...,3, (44) 

xe^. 

Note that the differential of the cost functional (10) may be written in a form con- 
sistent with the new duality pairing 

r-T     /•27C 

y((t);(t)') = -y   J    d,[d;^:H*i^v-y)]dWdxdt 

= {-d-^9<*[9{v-y),v') 
\ / L2{Q,T;H\Ci)) 

Combining (11) and (44) with (42) and substituting the above expression, we obtain 

'L2(fi) Jo t=0 V ?=o    / 
(45) 
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Using an Li inner product to extract the gradient as in (13), we may identify the 
gradient as 

Vj = -d^v ,2„*,f/ 
t=o 

(46) 

Note that the gradient so defined has zero mean mode and thus lies in the space 
of feasible ^'. An analogous derivation using a duality pairing which incorporates 
derivatives with respect to the time variable (that is "//^-in-time") is presented in 
Appendix A. 

4.3.2   An adjoint derivation with the H ^ duality pairing 

We again minimize the original cost functional (6) by modeling the system evo- 
lution with the primitive form (2) of the Kuramoto-Sivashinsky system, but now 
derive the adjoint operator with an //"' duality pairing via the identity 

U'"~\LV') = (L*'"'\*'"-\V') ,      +b^u       (47) 

from which it follows that 

^*fl-\*,H-^ ^ _^y,H-^ +434v*>^"' +K[32V*>^"' -a?(v3-V*''^'')],   (48) 

b-^ = ■f (aj'v*--')(aj^')^^' + 
f=0 Jjc=0 

Making use of this adjoint operator, we define an adjoint system with 

' L*'"~\*'"'' = -dl^*{^v-y) = -dlf,     xeCl, tG[0,T], 

<  dy'"''\0,t) = dy'"~\2%,t), te[0,T], i = 0,...,3,   (49) 

v*'"~\x,T) = 0, xe^. 

Note that the differential of the cost functional (10) may be written in a form con- 
sistent with the new duality pairing 

Jo  Jo I- 
= l-dl9{*{9{v-y),v') 

dj.  v'dxdt 

'(ft)) 

Combining (11) and (49) with (47) and substituting the above expression, we obtain 

Jo t=o ^ t=o    / 'L2{Q.)' 
(50) 
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Using the Li inner product (13) to extract the gradient, we may identify the gradient 
as 

vj? = -aj^v*'^"' (51) 
f=0 

4.4   Preconditioning the gradient 

ks, indicated in (22c), the definition of the gradient may be generalized by taking 
the H^ inner product (rather than the L/i inner product) when extracting the gra- 
dient from the expression of the cost functional differential. By so doing, we may 
emphasize the importance of some length scales over others during the iterative 
gradient-based optimization procedure, a strategy commonly referred to as pre- 
conditioning. Note again that (in a convex problem) the minimizer is not changed 
by such a procedure, though the gradients are significantly altered. For example, the 
cost functional differential (13) in the primitive formulation of the adjoint analysis 
may be rewritten to incorporate either an H^ inner product or an H~^ inner product 

By the definition of these inner products and the relation given in (18), it follows 
that the H^ gradient, V^ j, and the H^^ gradient, V^   J, may be identified as 

7W' a _    :i-2.-,* v"'i = -a: 
r=0 

(53) 

We may thus extract different gradients from a given adjoint field calculation. Note 
that the H^ gradient emphasizes the large length scales and the //"' gradient em- 
phasizes the small length scales. Conversely, as shown in (21), (46), and (51), we 
may also extract a given gradient from different adjoint field calculations. 

We now explore the utility of the weighted linear combination of L2, H^, and H"^ 
inner products defined in (23) for preconditioning the gradient. For clarity, we first 

consider for this purpose the inner product (21,22) , „ which, as discussed previ- 

ously, represents a linear combination of the L2 and //' inner products. Returning 
to the standard formulation of the adjoint analysis, but extracting the gradient via 
this inner product, we obtain 

= f_J_ri_/2a2ivw"-"j7,(^')      =fv-*|   A')     ■ (54) 
V1 + /2L      ^ *J        ■^'^Ji^in)    \   lf=o'^/L2(ii) 

We may thus identify the desired gradient V^ ''°°j? by solving the ID Helmholtz 
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equation 

^[l-/?35]V"'--J = v- 
+ 

7W1 • 

/=0 (55) 

'm V^""/(27t). 

The interpretation of the significance of this expression is clear in Fourier space. 
Using [-j/t to denote the corresponding spatial Fourier coefficient at wavenumber k, 
it follows that 

VW'i'~j7 kj + l 
^'ipik) l/=0 (56) 

where y^ip{k) = ky{k'^ + k'^) is a low-pass filter (see Figure 3a) with a cut-off 
wavenumber of A;i = 1//]. A gradient defined with such a scale-dependent filter 
de-emphasizes the spatial wavenumbers greater than ^1 in the gradient-based opti- 
mization process. Note that taking ^i ->■ <» recovers the standard L2 gradient (which 
weights all wavenumbers equally), whereas taking A:i —>■ 0 recovers the H^ gradi- 
ent. Note also that the inverse Laplacian is commonly used as a "smoother" in this 
type of problems. The inverse Helmholtz operator used to obtain the solution to 
(55) is a generalization of the inverse Laplacian, which is used to solve this sys- 
tem in the l\ ^ °° (that is, k\ -¥ 0) limit. Both such operations may be used to 
obtain a "smooth" gradient even when the system is defined on a complicated do- 
main in which Fourier analysis is not possible. Thus, this form of preconditioning 
has the effect of enforcing smoothness of the control and in this sense is similar 
to Tikhonov regularization. Formal connection between these two approaches is 
established in §4.5.5. 

We now consider reintroducing the H~^ component into the weighted linear com- 
bination of inner products used to extract the gradient 

/=K"^-*')..,..-, 
/2 ,2/2 

1-1 .32 1        .-2 
/? + /2,   ^      /2 + /2, 

7W'l''-l 

\(l-f/2)(l+/2,) 

V   \t=o    JL2{Q.) 

We may thus identify the desired gradient V^''"' J? by solving the system 

LiiO.) 

Ih 
(l+/f)(l+/2,) 

1- 
/2/2 
'r-1  g2 5-2 

l^ + ll, l^ + ll, (57) 

V^"''-'j7(0) = V^'"'-'i(27t). 

Again, the interpretation of this expression is clear in Fourier space. Taking k] = 
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(a) (b) 

Fig. 3. Interpretation of the systems (55) and (57) in Fourier space as (a) low-pass and (b) 
band-pass filters which de-emphasize certain ranges of wavenumbers in the extraction of 
the gradient. 

l//i and k-\ = l//_i, it follows that 

yW !fbp{k) \t=0 (58) 

where ^bp{k) = ^ip(k) ■ k^/{k^ + k^_^)is& band-pass filter (see Figure 3b) formed 
by the product of the low-pass filter found previously (with a cut-off wavenumber 
of jti = l//i) and a high-pass filter with a cut-off wavenumber of A;_i = l//_i. A 
band-pass filter of this sort is useful to employ when the optimization process in 
the multiscale system is designed to target "intermediate-scale" phenomena. 

4.5   Relations between different regularization strategies 

We now summarize the relations between the various alternatives in the framing of 
an adjoint analysis, as discussed in detail in the example considered above. We will 
first (in §4.5.1) show how adjoint operators corresponding to alternative forms of 
the evolution equation (§4.1) and alternative duality pairings (§4.3) are related to 
the primitive adjoint operator L* determined in §3. We will then (in §4.5.2) discuss 
how the associated adjoint fields are related, and tabulate how any of three cost 
functional gradients sought may be determined from any of five alternative forms of 
the adjoint system. After brief discussions of an interesting special case (in §4.5.3), 
an alternative method of deriving an adjoint analysis (in §4.5.4), and the relation 
of Tikhonov regularization to gradient preconditioning (in §4.5.5), we conclude the 
section (in §4.5.6) with a discussion of the important numerical consequences of 
these alternative formulations of an adjoint analysis. 
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4.5.1    Relations between the various adjoint operators 

Recall first that w = dxV, W = dxv', and thus, by (12) and (27), that dxLz = (M^'dxZ. 
By the identity (15), which defines L*, it thus follows (assuming all variables are 
periodic in x) that 

\Mw') ^ _^ = ^w*,3;cXv'^ 

2% 
/L2{0,T;L2m 

= (L*(-dxW*),v') 

= /aj'L*{dxw*),dxv') - I r"(3X) v' 

i^-dxw\Lv') 
L2{0,T-Mm 

~[lo   (^^^*)^'^^ 

l^{0,T;L2ia.)) 

lt=T 

t=0 
it=T 

dx 
t=0 

Note that the above derivation computes the adjoint of a composition of operators, 
dxL, and the result is consistent with a general property of adjoint calculus, namely 
that (1i CZi)* = ^2%*, where % and ^2 are two linear operators. Note also that, in 
general, %*%* ^ CZ;*CZ^*. Noting (28), it follows that 

!M*z = d;'L*idxz). 

Using a similar approach, it is also straightforward to show that 

9Cz = dxL*{d;'z). 

(59) 

(60) 

Similar relationships may be found for the adjoint operators derived from the H^ 
and //"' duality pairings. For example, it is easily seen (again assuming all vari- 
ables are periodic in x) that 

\ /L2{0,T;HHa))      \ I L2{0,T-M{O.))       \       "" I L2{0Jv 

JO \t=Q 

\ ""       ^ -^        ^    /L2{QJ;H\a))     [70 

Noting (42), it follows that 

L*'''\ = d-^L\dlz). (61) 

L2{Cl)) 

t=0 

Using a similar approach, it is also straightforward to show that 

(62) 
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4.5.2    Relations between the various adjoint fields 

Substituting (59) into (29), it is seen that -"dxW* satisfies an equivalent set of equa- 
tions as that defining v* in (17). We may thus conclude that the primitive adjoint 
variable v* and the vorticity adjoint variable w* are related such that v* = —^xW*. 
By (31), it thus follows that 

Vj^ = -d-\*      . (63) 
^ ?=o 

The quantity Vj7(p is simply the gradient of the cost functional J?'(p(cp) in the space of 
(p, where the metric is defined by the L2 inner product. 

We now consider two gradient descent algorithms: one conducted in the space of 
9 and proceeding at each step in the direction Vj^q,, and the other conducted in the 
space of ^ and proceeding at each step in some direction sisf. We then constrain Sisf 
such that the two descent algorithms are equivalent in the sense that (p(") = dx^^'^^ 
for all iterations i. It follows that 

(p(")=(p(«-i)-aVj?< 

(|)W = (j)' 

that is, the corresponding descent direction in the space of ^ is given by s^ = 
9~' (Vj7(p). Combining this with (63) and (53), we obtain 

2.,* 
^ = -^x   V 

t=0 

that is, gradient extraction via the L2 inner product in the space of (p = dx^ and 
gradient extraction via the H^ inner product in the space of <^ are equivalent. Using 
a similar approach, it is straightforward to show that gradient extraction via the 
L2 inner product in the space of \|/ = 3~^(1) (where \|r is again restricted to have 
zero mean) and gradient extraction via the H~^ inner product in the space of (j) are 
equivalent. Similar observations regarding gradient computations before and after 
a transformation of the independent variables in a system (in the finite-dimensional 
setting) were made by Dennis & Schnabel [34]. 

Noting the convenient form of the terms b\ and b-\ in (42) and (47), it is seen that 
the derivation of the H^ gradient [see (52)] follows naturally from the adjoint field 
defined with the H^ duality pairing, and that the H"^ gradient follows naturally 
from the adjoint field defined with the //"' duality pairing 

V" J = v*'" 
t=o 

and      V"~'j = v*'"'' 
r=0 

In order to summarize the pattern that emerges from the application of the various 
regularization strategies to the formulation of adjoint-based analyses, we collect 
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some of the significant relations between the various adjoint operators, the corre- 
sponding adjoint fields, and the different gradients in Table 1. 

4.5.3   Special case: spatially-uniform linearized systems 

The relationships between the various alternative forms of adjoint analyses summa- 
rized above simplify greatly when the linearization of the governing evolution equa- 
tion is spatially uniform (that is, it does not have spatially-varying coefficients). 
This is the case, for instance, when the system (2) is linearized about the state 
V = constant. The perturbation operator for such a case will be denoted £Q and its 
adjoint I^; both may be obtained from (12) and (17) by setting v = constant. The 
reason for the simplification in this special case is that both LQ and L^ commute 

with 3^, and thus, by (59)-(61), 1^ = !]^* = ^ = £^'"' = £^'"''. 

We now consider the system (17), with the operator L* replaced by £^. Defining 
v| = -^x^v* and noting (53), the gradient of the cost functional J extracted using 
the //' inner product may be written V^ J^ = v* \^^Q. Thus, 

By the discussion in §4.2, it is seen that v* is exactly the adjoint variable used when 
the cost functional J^ is minimized. It follows (in this special case only) that 
yf/'ji2 = v^J^"' and, similarly, that V^"'J^ = V^j?^'. 

4.5.4   Optimization derivations based on Lagrange multipliers 

It is important to note that the four distinct regularization opportunities considered 
in this paper are also available when the evolution equation of the system is incor- 
porated into the optimization problem with a Lagrange multiplier approach. In such 
derivations, the cost functional selected is first augmented with a selected form of 
the duality pairing (cf. §4.3) of a Lagrange multiplier with a selected form of the 
governing equation (cf. §4.1). This augmented cost functional is then minimized 
with respect to both the chosen control variable and the Lagrange multiplier, often 
using a gradient-based strategy using a selected form of an inner product to define 
the gradient. This setting effectively renders the optimization problem as "uncon- 
strained", and the Lagrange multiplier itself turns out to be equivalent to the adjoint 
field used in the present derivation. In derivations based on such Lagrange multi- 
plier techniques, all four of the regularization opportunities outlined in this paper 
are still available and may be selected to achieve the desired regularizing effect. 
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4.5.5   Tikhonov regularization in the gradient optimization setting 

One common technique to regularize an optimization problem is to modify the cost 
functional (see §4.2) by adding a term which explicitly penalizes the irregularity 
of the control (j). This approach is commonly referred to as Tikhonov regularization 
(see, e.g., [27], [10], [11], and [12]). When applied to the data assimilation problem 
formulated in §3, this results in a new cost functional 

J/,((^)=j(0)+^2 2 
(64) 

H'-{Cl) 

where ir and r > 0 are constants characterizing the degree and form of the regular- 
ization. The differential of this functional is given by 

flit 
^/(ct);^')=j'm')+e, / (3^(1.)m')dx, 

Jo 

from which we may extract the La gradient of the functional as 

VJ^ = VJ + elk^'-^, (65) 

where Vj/ may be determined as in §3 and for convenience we adopt the Fourier- 
space representation. 

The optimization problem which we are attempting to solve may be written as 
Vj?^((l)) = 0. Further, the gradient-based optimization strategy which we have em- 
ployed to solve this problem may be interpreted as a method to find the stationary 
solution of the following system, which evolves in the artificial "pseudo-time" co- 
ordinate X 

^ = -V}, = -V}-^2^2.^   onTG (0,00), ^^^^ 

$ = $0 at X = 0. 

Effectively, we are attempting to march this artificial system as rapidly as possible 
to steady state characterized by ^ f» 0. Time accuracy during this artificial march 
is not required. This interpretation facilitates solution of the optimization problem 
at hand by adopting a variety of different time-discretization strategies applied to 
(66). Due to complexity involved in its evaluation (employing both forward and 
adjoint simulations), the term v3' must be calculated explicitly. However, the term 
£^k^''^ is easily handled with a variety of either implicit or explicit treatments. This 
leads to many possible forms of the optimization algorithm, including: 

1. explicit (Euler) treatment of the penalty term 
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2. implicit (Cranck-Nicholson) treatment of the penalty term 

'l-iAX^2^2r 
 ^ rv})W + l + iAT^2^2r^   ■" 

$(")-Ax    (^^^)'^ 

l + iAX^2^2r 
^(«) 

H-lAX^2jt2r' 

where Ax is some discrete stepsize in the pseudo-time coordinate x. Taking Ax = 
constant results in what is sometimes referred to as Landweber iteration (see, e.g., 
[10]), and is often the approach most amenable to numerical analysis. In practice, 
however, it is usually more efficient to adjust the stepsize Ax at every iteration in 
order to minimize Jr- Note that the explicit method #1 suffers from a stability con- 
straint Ax < 2i~'^k~^ which is reminiscent of a CFL condition and, if violated, 
will result in an unstable explicit march and amplification of the small scales of 
the field $. In practice, method #1 is therefore generally not preferred. On the other 
hand, no such restriction applies to method #2. Furthermore, we observe that the 
semi-implicit method #2 may in fact be regarded as an explicit approach utilizing 
the cost functional Jr{^) and a smoothed gradient extracted with the inner prod- 

uct (zi,Z2)L2(ft) + ^ (zi)Z2)//r(fl) (see §4.4). We thus see that the semi-implicit 
variant of Tikhonov regularization is in fact a special case of the regularization 
framework proposed in the present study, incorporating appropriate forms of the 
cost function and the inner product used to extract the gradient. 

4.5.6   Numerical implications 

As summarized in Table 1, the alternative adjoint systems considered in this pa- 
per are related, and any of the cost functional gradients sought may be found from 
any of several alternative definitions of the adjoint system. Thus, these alternative 
definitions of the adjoint system might not be of much interest from a purely math- 
ematical standpoint, as (in the continuous setting) they all contain essentially the 
same information. From the standpoint of a discrete numerical implementation, 
however, the distinction between these various derivations can be quite significant. 
To illustrate this, the present subsection analyzes the adjoint systems considered 
in §3, §4.3.1, and §4.3.2 (that is, the adjoint systems formulated in the standard 
approach and the approaches incorporating H^ and //"' duality pairings). In §5.1, 
this analysis is further supported with numerical simulations. 

There are two essential features of the alternative definitions of the adjoint systems 
which are noteworthy. The first is that, as compared with the standard adjoint sys- 
tem (17), which is forced by a term / = 9{*{^v-y) related to the measurement 
misfit, the adjoint system considered in (44) (that is, when the H^ duality pairing 
is used) is forced by a significantiy smoother term, —d~^f, whereas the adjoint 
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system considered in (49) (that is, when the H~^ duahty pairing is used) is forced 
by a significantly less smooth term, -3^/. We may thus expect the energy as a 
function of spatial wavenumber of the field v*''^ to have a significantly faster roll- 
off with wavenumber, and the energy as a function of spatial wavenumber of the 
field v*'^~ to have a significantly slower roll-off with wavenumber, as compared 
with the primitive adjoint system v*. The field v*'^ is thus significantly easier to 
compute accurately than both v* and v* ,*,H-' 

The second noteworthy feature is that the alternative adjoint systems differ in their 
"advection terms", which [by (16), (43), and (48)] we identify as 

!B*z = vdxZ, 'S*z 
f^max 

=    E    [^]k-k'ik'[z]k>, (67a) 
'-     -"^    k'- k 

^*'"'z = d;^{vdlz), 'B*'"'z =      2-      j^2\-'^\k-k'lk[z\k', 
!<■        k =~ktnax 

(67b) 

r'"-'z = dl{vd;h), <f^z (67c) 
J 

*   k'- k 
k'^O 

Note again that we have used the convention [z]k for the ^-th component of the dis- 
crete Fourier transform of z, and that [z]Z2]k = T,k'[z]]k'[z2\k-k'■ Due to presence of 
the spatially-varying coefficient (that is, the field v), these advection terms act to re- 
distribute energy among different Fourier modes, much in the same way as does the 
nonlinear term in the original Kuramoto-Sivashinsky equation. The presence of the 
extra factors ofk'^/k^ and k'^/k'-^ in the Fourier transforms of these advection terms 
distinguishes the alternative adjoint operators L*'" and L*'^ from the standard 
adjoint operator L*. To appreciate the impact of these extra factors in a marginally- 
resolved system, it is of interest to consider their influence on the largest resolved 
wavenumber (that is, the smallest resolved length scale) in the numerical represen- 
tation of the system. Thus, taking k = kmax in the above expressions, it is seen that, 
as compared with the primitive adjoint advection term in (67a), the sum in (67b) 
representing the the corresponding term in the //' adjoint equation has a coefficient 
which varies from 0 to 1. The contribution to this sum with the largest coefficient 
is due to the adjoint modes with large wavenumber k' (which do not contain much 
energy anyway, due to the reasons discussed in the previous paragraph), and the 
primal modes with small wavenumber kmax — k' (which are well resolved in the 
numerical simulation). On the other hand, the sum in (67c) representing the corre- 
sponding term in the //"' adjoint equation has a coefficient which varies from 1 to 
kmax/kmin (which might be quite large). The contribution to this sum with the largest 
coefficient is due to the adjoint modes with small wavenumber k' (which do contain 
significant energy), and the primal modes with large wavenumber kmax — k! (which 
might not be well resolved in the numerical simulation, and may thus be corrupted 
by noise). We thus again conclude that the field v*'^ should be significantly easier 
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to compute accurately on a marginally-resolved numerical grid. 

5   Computational examples 

In this section, we provide a few computational examples to illustrate how the dif- 
ferent brackets used in the framing of an adjoint analysis may be used to affect the 
computational accuracy and the rate of convergence of a numerical optimization al- 
gorithm. Based on this analysis, we then propose a promising multiscale precondi- 
tioning approach that improves the convergence of the state reconstruction problem 
highlighted in the previous two sections. Note that the present computational study 
is by no means meant to be exhaustive, but simply to indicate the utility of pursu- 
ing the various regularization opportunities outlined previously. Many interesting 
related questions are left to be characterized numerically in future work. 

In the PDE setting, the descent direction determined via an adjoint analysis depends 
solely on the choice of the norm in the cost function (see §4.2) and the inner product 
used to extract the gradient (see §4.4). The choice of the form of the evolution 
equation (see §4.1) and the duality pairing (see §4.3) affect only how the desired 
gradient of the cost functional selected is determined. 

In the discrete numerical implementation, however, selecting appropriate forms for 
the evolution equation and the duality pairing can have a very significant effect on 
the computational complexity of the resulting finite-dimensional approximations 
of the flow and adjoint systems. The choice of the form of the evolution equation 
(primitive, vorticity, or streamfunction) and its effect on the complexity of the state 
simulation has already been studied extensively in the numerical simulation litera- 
ture. This choice together with the choice of the duality pairing (L2, H^, or H~^) 
and their combined effect on the complexity of the associated adjoint simulation, 
though equally important, have barely even been mentioned in the numerical opti- 
mization literature. The present paper attempts to draw attention to these important 
issues. 

The specific problem considered in the data assimilation results reported here is ob- 
tained by setting K = 4 • lO'' in (2). This rather high value for K insures the system 
under consideration exhibits chaotic multiscale dynamics. The peak of the energy 
spectrum of the system is generally between k = 20 and k = 25 and, for higher 
wavenumbers, the spectrum rolls off rapidly after that. Around 22 to 23 peaks may 
usually be counted in the domain Q. at any given time. A typical numerical simula- 
tion of this system is shown in Figure 4. 

The initial condition (selected on the chaotic attractor of the system) which we will 
seek to reconstruct, based solely on measurements of the system on [0,r], is that 
shown in Figure 4a. The length of the optimization horizon T used, which corre- 
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(b) 
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X 

2,1(12 Inx 

Fig. 4. Dynamics of the Kuramoto-Sivashinsky system for K = 4 • 10^: (a) initial condition 
v(0) = (]) (chosen on the chaotic attractor of the system), and (b) spatio-temporal evolution 
of the system (visualized are the zero (solid), several positive (dotted) and negative (dashed) 
isocontours of v in the space-time plane). 

spends to about 300 time steps, is sufficient to demonstrate significant dynamics of 
the chaotic system, as illustrated in Figure 4b. The observation operator 9{ selected 
represents observation of the real part of the first 50 Fourier coefficients {i.e., the 
first 50 coefficients of the cosine decomposition) of the primitive variable v [that is, 
Ar = {1,..., 50} in (8)]. We will assume for the purpose of this discussion that our 
measurements are not corrupted by noise [that is, T) = 0 in (6)]. The initial guess for 
the initial conditions, (t)^°\ vi'ill be taken to be zero in all optimizations attempted. 
These several choices make the (admittedly contrived) state reconstruction problem 
studied here difficult, yet still solvable in a reasonable number of iterations. This 
problem thus provides a tractable ID multiscale chaotic testbed which is useful 
in quantifying the effectiveness of the various regularization strategies proposed. 
Extension of these strategies from the present ID model problem to 2D and 3D 
systems of engineering relevance are straightforward—a few such extensions of 
particular interest are discussed briefly in §6. 

In the present work, the state and adjoint systems are both solved in the well- 
resolved setting (on 512 grid points) using a dealiased pseudospectral method. Time 
advancement is performed using an RK3 scheme on the nonlinear term and a gen- 
eralized trapezoidal method with 0 = 5/8 (see [35]) on the linear terms. Gradient 
iterations are carried out using the Polak-Ribiere version of the Conjugate Gra- 
dient (CG) method (see, e.g., Nocedal and Wright [32]). The "momentum" term 
in the CG method is calculated using a standard hi inner product, and is reset to 
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Fig. 5. Energy spectra of (solid) a typical solution of the Kuramoto-Sivashinsky equation 
(2) and of three different definitions of the corresponding adjoint system: (dashed) v*'^ , 
as defined in (49), (dot-dashed) v*, as defined in (17), and (dotted) v*'^ , as defined in (44). 

zero every 20 iterations. Minimization in the descent direction is performed using 
Brendt's method [36] at each iteration. A gradient method has been selected for the 
optimization rather than a quasi-Newton method (which is an attractive alternative) 
in order to provide a simple environment for comparison of the different adjoint 
formulations. 

5.1    Spectra of the adjoint fields obtained with alternative formulations 

Noting the discussion in §4.5.5, it is expected that the adjoint variables v*, v*''^ , 
and V*''' will have very different spectra, implying that some of these adjoint 
fields will require significantly higher spatial resolution to determine accurately 
than others. This behavior is clearly evident in Figure 5, where we compare the en- 
ergy spectra of the adjoint variable at f = 0 (after the backward-time adjoint march) 
for three different definitions of the duality pairing after the 100''' iteration of the 
optimization process. For comparison, we also show the energy spectrum of a typ- 
ical solution v(^) of the Kuramoto-Sivashinsky system (2) on the chaotic attractor. 
Note that the decay rates of the spectra are consistent with the relations shown in 
columns 5-7 of Table 1. Specifically, the energy spectrum of v*'^ rolls oifk^ faster 
than the energy spectrum of v*, which rolls off k'^ faster than the energy spectrum 
of v*'^ . The key issue is that, even though the adjoint equations are linear, the 
nonconstant coefficients in these equations relate the different Fourier modes of the 
adjoint field during its evolution in time. Thus, the differences between the energy 
spectra for the various possible definitions of the adjoint field are significant when 

33 



considering what resolution (or cut-off wavenumber) is required to compute ac- 
curately even the low-frequency components of the adjoint field. In particular, the 
accelerated roll-off with wavenumber of the Fourier transform of v*'^ may ren- 
der this definition preferable in systems for which only marginal resolution can be 
afforded. 

5.2    Optimization 

As defined in (41), (6), (40), the three cost functionals j"~^, J, and j/^' effectively 
measure the misfit of the model with the observed measurements with particular 
focus, respectively, on the large length scales, on all length scale, and on the small 
length scales. In this section, we will consider optimizations based on the mini- 
mization of all three of these cost functionals. To perform the optimizations, we 
will consider gradients extracted using the w'''°° inner product, as defined in (54), 
for various values of /]. Recall that the W'"'°° inner product reduces to the L2 inner 
product in the /i —>■ 0 limit, and to the //' inner product in the I] ^ 00 limit. To 
simplify the notation, the different cases considered in this section will be referred 
to using a shorthand notation {zi ,22} to characterize the spatial component of the 
brackets ^1 and W3. For example, {L2,Li} will be used denote the standard (La- 
based) formulation discussed in §3, whereas {H^, W'''°°} will be used to denote the 
formulation derived from the H^ cost functional (40) together with the w'''°° inner 
product used to define the gradient. 

For the simulations presented in this section, to bypass further consideration of the 
numerical resolution issues discussed in the previous section, we will continue to 
use fine resolution, discretizing the system on 512 grid points. This resolution is 
sufficient to resolve the adjoint system obtained using any of the duality pairing 
definitions considered in the previous section. Thus, as summarized in Table 1, we 
may determine the gradient sought via appropriate use of any of these definitions 
of the adjoint operator. For simplicity, all calculations discussed in the present sec- 
tion are performed using just the primitive adjoint equation (16), which is based on 
the primitive form of the Kuramoto-Sivashinsky system and the standard L2 dual- 
ity pairing. This allows us to focus our attention in this section on the effects of 
modifying the brackets m\ and ^^. 

5.2.1   Analysis after one iteration 

We first analyze the effect of the choice of ^1 and ^3 after just one iteration. The 
progress made towards the minimum on the large length scales, over all length 
scales, and on the small length scales will be assessed based on the reduction of 
J^' , J, and H^ respectively, regardless of which cost functional is actually mini- 
mized in the case considered. 
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37r/2 

(b) 

Fig. 6. (a) The shape of the gradients V'^ ''°°j/ in physical space, normaUzed by their peak 
value on the subinterval shown, (b) The energy contained in the gradient field as a function 
of spatial wavenumber. The cases considered are: (dashed) /] = 0.5, (dot-dashed) Zj =0.1, 
and (dotted) /] = 0. For comparison, the solid lines depict the actual initial condition sought. 

We begin by comparing the shapes of the gradients themselves in the case {L2, W'''°°} 
for different values of /] (Figure 6). Note that the various choices for /i which have 
been used result in substantially different gradients, and that, as /] increases, the 
gradients V^ ''°°j/ become significantly smoother (that is, as I] increases, the en- 
ergy in the gradient field rolls off more rapidly with wavenumber). However, it is 
difficult to determine visually which of the gradients best captures the actual initial 
condition. 

In Figure 7, we present values of the functional J^ , J, and j7^ obtained after 
the first iteration in all the cases considered as a function of the length /] which pa- 
rameterizes the inner product used in gradient extraction. Note in all the cases that 
the three functionals vary smoothly with /] and reveal similar trends. The upper- 
left subfigure illustrates the effect on j?^    when a control strategy is used which 
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Fig. 7. Dependence of the functionals j7^"', J7, and J?^ on the length /] parameterizing the 
inner products W'''°° used to extract the gradients during the first iteration. In all figures, 
the vertical axis is normalized by the value of the corresponding cost functional for the 
initial guess (l)^'^) (that is, before the first iteration). Thus, a cost functional value of 0.6 in 
the above figures implies a 40% reduction of the corresponding cost functional after one 
iteration. 

targets j^" . Similarly, the lower-right subfigure illustrates the effect on !)" when 
a control strategy is used which targets J?'^ . Note in both cases that, after a single 
iteration, the functional targeted by the control algorithm is reduced substantially. 
However, as one might expect, control strategies that target large length scales do 
not work well at small length scales (see lower-left subfigure) and control strategies 
that target small length scales do not work well at large length scales (see upper- 
right subfigure). Also note that, in the case when j is minimized (center column), 
the functional!)"' (which measures the quality of the fit at the large length scales) 
exhibits a particularly well-defined minimum for intermediate values of l\ in the 
range [0.1 — 0.35]. For the case in which j is minimized with l\ selected in this 
range, the performance on the large length scales is as good as when the functional 
!)^~ was targeted, and the performance on the intermediate and small scales is not 
significantly sacrificed. Further, the overall performance (in terms of all three met- 
rics) is significantly better using the W'''°° inner product for intermediate values of 
l\ than when using either the L2 or the H^ inner products. We thus see that, when 
posing an optimization problem of this sort, it is useful to select appropriate defi- 
nitions of both the cost functional (by appropriate selection of ^1) and its gradient 
(by appropriate selection of ^3) in order to tune the performance on the length 
scales of interest. 
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5.2.2   Analysis after many iterations 

We now analyze the effect of the choice of ^i and ^3 after 100 iterations are 
performed. Several cases were run; for brevity, the following cases of particular 
interest are reported here: 

1) {//-',L2}, 
2){L2,L2} 
3) {L2, W''"} with /] = 0.1, and 

4) {12,^'''"} with /{"^ = /{°^C"> where if^ = 0.1 and C = 2/3. 
The fourth case will be referred to as a niultiscale preconditioning approach. The 
motivation for this new approach is based on the observation that in multiscale 
nonlinear systems (such as hydrodynamic turbulence) the large-scale modes are 
usually more energetic than the small-scale modes. It such systems it appears log- 
ical to attempt first to determine the large length scales of the control (j) (in the 
present problem, the estimate of the initial conditions) at the early iterations (for n 
small), before evenmally attempting to tune (]) at the small scales at later iterations 
(for n large). To facilitate this, the gradient is extracted using an W'''°° inner prod- 
uct, where l\ is relatively large at the early iterations and is subsequently reduced 
towards zero; /, thus provides a convenient "knob" controlling the cut-off length 
scale as a function of the iteration number n. This approach may be regarded as a 
multiscale version of the variable preconditioning method discussed in the context 
of finite-dimensional linear systems by Axelsson [37]. Appropriate values of l\ 
and C, for the present system were found by trial and error. 

Note that, when computing the descent direction at every iteration of the present 
conjugate gradient descent algorithm, we need to evaluate a "momentum" term 
formed by a ratio of inner products of the recently-calculated gradients. Though 
there is some discussion of this issue in the literature, there appears to be no 
commonly-accepted strategy for selecting the inner product to use to calculate the 
momentum term when a variable preconditioning strategy is employed. We have 
used simple L2 inner products to evaluate the momentum term in the present work. 
Other strategies were also tried, including the use of inner products in this cal- 
culation that varied from one iteration to the next. Unfortunately, none of these 
strategies were found to significantly accelerate convergence. 

In Figure 8 we show the reduction of the three metrics j?^ , J, and j?^ in the 
four cases mentioned above. The best convergence in terms of all three of these 
metrics is obtained using the multiscale preconditioning approach outlined above. 
Note also that the value of ^ selected in the multiscale preconditioning approach 
effectively resulted in "smoothing" of the gradient only during the first 10 — 20 it- 
erations. After that, I] was so small that the gradients extracted using the W'''°° inner 
product were virtually indistinguishable from the gradients extracted using the L2 
inner product. Even so, the multiscale preconditioning strategy had an appreciable 
beneficial effect on the overall optimization. 
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(a) minimizing !)^ (b) minimizing J 

Fig. 8. Variation of the functionals j"' , J, and j" as a function of the iteration count 
for reconstructions based on the following inner products: (solid) Li, (dotted) W'''°° with /] 
fixed, and (dashed) W'''°° with /] progressively decreased towards zero. 

6   Extensions 

In §4 we presented a comprehensive picture of different regularization strategies 
applied to a simple model system. Since the ultimate goal is to apply these meth- 
ods to real systems of physical and engineering interest, such as the Navier-Stokes 
equation in a bounded domain, below we show that such generalization is in fact 
straightforward. One significant difference is the more complicated structure of the 
governing equation and its adjoint when working in higher spatial dimensions. An- 
other significant difference is related to the fact that various terms obtained from 
the integration by parts do not vanish on the solid boundaries. In order to highlight 
some of the issues, below we will study the effect of applying selected regular- 
ization options to the adjoint-based optimization of the Navier-Stokes system in a 
periodic domain (§6.1) and the Kuramoto-Sivashinsky equation in a bounded do- 
main (§6.2). Due to space limitations, the case of the Navier-Stokes system in a 
bounded domain is deferred to a forthcoming paper. 
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6.1    Controlling a 3D Navier-Stokes System 

We consider here a Navier-Stokes system 

''^ + (v-V)v + Vp-^Av = <|),   inn X (0,7) 
at 
V-v = 0, 
V = Vo 

^ V periodic inx\,X2,x-i, 

in ri X (0, T) 
atf = 0 

(68) 

where v is the velocity field, p is the pressure, n is the viscosity, and ^ is an ex- 
ternally applied body force representing the control. The system is supplemented 
with the initial condition VQ and its evolution takes place in a domain £1 = [0,27i]^ 
periodic in all three spatial dimensions. The domains Q.\, Q.2 and Q.^, (see §2) all 
coincide with Q., while the system evolution, the control, and the cost function 
are all defined on Six [0, T]. Since we now deal with vector quantities depending 
on three spatial variables, and the control now also depends on time, the brackets 
(22a)-(22c) used to frame the adjoint analysis need to be suitably redefined 

L2{o,T\m{a)) Jo   JQ 

=n Jo JQ L2{o,T-m{a)) 

L,) A ['[ f^pidaa,. 
V    J L2(0,T-H1(Q.))      Jo   JQ.  34  dx^! 

a dx'j dx'j 

a    3Xy    3Xy 

3^y/3^ 

dQ.dt, 

dQ.dt, 

(69a) 

(69b) 

(69c) 

where repeated indices imply summation and we will restrict our attention to the 
cases with ^ > 0. By analogy with (23), we can define inner products as a weighted 
linear combination of terms of the form (69c) with different values of q, e.g., 

(-) 
1 

L2(0,r;W'i'~)       1+/2 [V-"   ) Li{0,T-M{O.)) (y'^)z.fo,r:.,f^)) + ''(y'') L2{0,T;H\O.)) 
(70) 

In order to emphasize the differences with respect to the standard approach, we 
analyze here the problem studied initially in the seminal paper of Abergel & Temam 
[38], i.e., enstrophy minimization with control in the form of the body force applied 
to the 3D Navier-Stokes system in a periodic domain. Consequently, we attempt to 
minimize the functional ^ 

UnM = 
1 

Vxv 
L2{0,T-Mm 

(71) 

^ For the sake of simplicity we skip here the penalty on the control <|). As noted in the 
numerical experiments of [5], the removal of this control penalty in nonlinear Navier- 
Stokes control problems apparently leads to bounded control feedback at least in a subset 
of well-defined problems. 
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The classical formulation is obtained by following the methodology of §3 (see also 
[38]). The differential of the cost functional is 

1' (<|),f) = r /■ (V X v) • (V X v') d0.dt = - f   / Av • \'dQ.dt,        (72) 
Jo   JQ. Jo   Jil 

where <|>' is a perturbation of the control and v'((|),<|>') solves the system 

^ 
0 P 

v' = 0 

v' periodic inx\,X2,X3, 

mQx{0,T), 

at f = 0, 
(73) 

with the linear operator 

|: + (v. V) v'+(v' • V) V - Mv'+vy 
^ 

-V-v' 
(74) 

We now define an adjoint operator with the identity 

"v'" V* 

.y. 
) 

_p\ L2iQ,T-Mm 

,^* + b„s, (75) 
P   ] / L2iO,T-M^)) 

where the duality pairing of vectors is defined in (69b). Consequently, the adjoint 
operator has the form 

9€ 
V" 

P 

-^-v [Vv* + (Vv*)^] -fxAy* + S/p* 

-Vv* 
(76) 

and the adjoint system may be defined as 

(^C 

v* = 0 

-Av 

0 
max{0,T), 

att = T, 
(77) 

V* periodic inxi,X2,X2. 

In such a case we obtain bns = 0 and the relations (75), (73) and (77) can be used 
to re-express j?^^(<(),((>') as 

^"•**') = ri*'-''''"*=(^'^'°'''^'""^""*'),.,„,n Lim) ■ 
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which yields the LQ, functional gradient 

yL2(o,r;L2(n))^^^^y*_ (78) 

In the vein of §4.3 and §4.4, below we examine how this derivation is modified 
when a different form of the duality pairing or a different inner product for the 
gradient extraction is selected. 

5.7.7    Adjoint derivation with the H^ duality pairing 

We now derive the adjoint operator using the identity 

"v'" \*,H^' 

_p'_ 
1 

p*'"' L2iQJ;H\Cl)) 

,H! 
:,*,//' 

p%H^ 
+ ^n^,l, 

L2{0,T\H\Q.)) 

(79) 

which yields the new adjoint operator 

,*,H' 

,*,//' 

(80) 

where AQ   is the inverse Laplace operator associated with homogeneous Dirichlet 
boundary conditions. We define the new adjoint system as 

,*,«' 0 
9C 

Ao'Av 

v*-^'=0 

, v*'^ periodic inX],X2,X3, 

from which we obtain bns,\ = 0 and 

mQ.x{0,T), 

at t = T, 
(81) 

Identifying   this   expression   with   either   (v^^^''''''^^^^^J„s,^'^ or 

(y^( . >    ( >>J^^^^') allows us to extract the corresponding gradients 

yL2(0,r;i2(ii))^ ^ -Av*'^', 
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6.1.2   Preconditioning the gradient 

We can extract preconditioned gradients by identifying the differential of the cost 
functional Jnsi'^,^') with an alternative form of the inner product, such as that de- 
fined in (70). As in §4.4, the new gradient can be obtained for all t G [0, T] as a 
solution of the Helmholtz equation 

-l^[l-A]V^(°'^^^"'°°)j7„. = v* 
^+^? (82) 
^L.(o,r;^',■")i„„ |-V^(0'^^^" ■")i„. periodic in x,, x^, X3. 

an 

We remark that we obtain by this approach the same properties with respect to 
scale-dependent filtering as discussed in §4.4. Since in the present case the con- 
trol <|) is also a function of time, the definition of the inner product used to extract 
the gradient can also be generalized by incorporating derivatives with respect to 
time. Using such an inner product will result in smoothing the gradient in the time 
domain. This approach is discussed further in §6.2.3. 

6.2    Controlling a Kuramoto-Sivashinsky System in a Bounded Domain 

We now proceed to investigate how the presence of solid boundaries affects the reg- 
ularization strategies developed in §4. We first briefly review the standard formula- 
tion and then see how it is modified when alternative forms of the duality pairing 
and the inner product for the gradient extraction are selected. For this purpose we 
consider the system (2) in a bounded domain Q. = [0,27t] (see, e.g., [39]) 

'a,v+4a>+K(a2v+va;,v)=o,   xeo., ?e[o,r], 
v(o,o = v(27t,o = o, ?G[o,r], 
d,v{0,t) = ^,d^v{2%,t) = Q, te[Q,Tl 
v(x,0) = vo, xeSl, 

where a time-dependent control (|) is applied on one boundary to regulate a quantity 
defined on the opposite boundary (note that for consistency with the initial data we 
must have dxVQ |^^Q = <!)|,=o^' Consequently, the norm and the inner product needed 
to formulate the adjoint analysis are redefined as follows 

\z\ A r^dfzfdt, (84a) 
Jo \HP{0,T) 

'HP{0,T) (^■■^4«o.n-r'^'^'><^'^^'''^- <'*' 
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(Note that discussion of incorporating time derivatives into the duality pairing is 
deferred to Appendix A.) We now select the cost functional as 

M<^) 9> 
(=2K 

2 
(85) 

In the present problem we have therefore the following relations between the spatial 
domains of interest: Q.] = {2n}, fil2 = ^ and Clj = {0}. Both the cost functional 
and the control are defined on [0, T], whereas the system evolution again takes place 
over Cl X [0, T]. The differential of the cost functional is 

where v' is the solution of the system 

(86) 

(87) 

'LV' = O, Xe ci, t e [O,T], 

v'{0,t) = v'{2Tt,t) = 0, te[o,T], 
ay(o,o = <])',ay(271,0 = 0, te[o,T], 
v'(x,o) = o, xesi, 

with the operator L defined as in (12). Note that consistency between the initial and 
boundary conditions requires that (|)'(0) = 0. The adjoint operator L* is introduced 
using duality pairing (15) and is given by (16). Defining the adjoint state v* such 
that 

L*v* = o, xea, te[o,T], 
v*(0,0 = v*(27i,0 = 0, te[0,T], 

dy{0,t) = 0, d,v*{2%,t) = dlv{2'Jt,t),   t G [0, T], 
v*{x,0) = T, xeQ., 

we can use (15), (87), and (88) to re-express the differential of the cost functional 
as 

(88) 

.^(,;c^') = -foyLjc,V.= (v^^(o.^)..^')Mo.r)' 

from which we obtain the L2 gradient 

v^(o.nj7^ = _a2v*(o,o. 

(89) 

(90) 

6.2.1    Targeting the cost functional 

Since the regulated quantity is now a function of time only, an alternative, targeted, 
cost functional may be selected as, for instance, 

j^rw=i 3> 
;I:=2JC 

2 

//'(o,r)' 
(91) 
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in which case the differential becomes 

• / [(9?a.^v) o,\')],=2. ^^+{Wlv) (a>')],=2j;:o' 
(92) 

so that the corresponding adjoint system is now 

' L*v* = 0, 
v*{0,t) = v*{2%,t) = 0, 

xeci, te[o,T], 
te[0,T], 

dy (0,0 = 0, dy (2%,t) = -dplv{2%,t) + b{t-T) (dtdlv) ,   te[0,T], 
X=2K 

[v*{x,0)=0, xeo.. 

This system must be interpreted in the sense of a distribution, as one of the bound- 
ary conditions involves a "delta function" in time, effectively forcing the adjoint 
system from the "comer" of the space-time domain. The fact that here, unlike in 
all the previous cases, we are strictly able to identify only a weak form of the adjoint 
system is not considered an insurmountable problem, as there are well-established 
methods for the numerical approximation of such systems. 

6.2.2   Adjoint derivation with the // duality pairing 

We now derive the adjoint using the H^ duality pairing (42), and write out the 
complete form of the term b] appearing in this relation as 

fei = £' [(9y)(a.v*'^')]|[/^+^^{K[(a.v*'^')(a>')-(a.V'''')(3y)' 

+ K [{dy"') a;,(vv') - {dlv*'"') vv' + 9-1 (va^v*'^' )v'] + 

(a.v*.^') (a>') - (dy^"') {dlv') + {dlv*'"') (3^0 - (a>*'^') (dW)] y^dt 

Making use of the expression for L*'"  in (43), we now define the new adjoint 
system as 

' L*'"\*'"' =0, xGCl, te[0,T], 

dlv*'"' (0,0 = ^Iv*'"' (27t, 0 = 0, tG [0, T], 

a^v*'^'(0,0 = 0, dlv*'"\2Tt,t) = dlv{2%,t), tG[0,T], 

[v*'"\x,T) = 0, xea, 

which allows us to re-express the differential of the cost functional as 

(93) 

(94) 
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As a result, the L2 gradient can be extracted as 

V^(o,r)_yfc = -a4v*'^'(0,0. 

By comparing this to the standard formulation culminating with (90), we note that 
the same La gradient of the cost functional is now obtained by applying a higher- 
order differential to the adjoint field obtained in the new formulation, which is 
consistent with the relationship between the corresponding expressions for the L2 
gradient in the periodic case as tabulated in Table 1. 

6.2.3   Preconditioning the gradient 

The control ^ in the present problem is a function of time only, and new gradients 
of the cost function (85) can be obtained by identifying its differential with an inner 
product (84b) incorporating either derivatives (p = 1), or anti-derivatives (p = — 1) 
with respect to the time variable. In the former case we obtain 

^^»;f) = -f(a^-Lj*'A=(v'"<°'^)j»,*')„,(„,,/ («) 

SO that the following holds 

^=0 (96) 
a^V//'(o,r)_y^(0^0) = 3,V^'(o,r)_^^(o, j) = 0. 

We see that the new gradient is obtained by solving this elliptic-in-time boundary- 
value problem, and therefore will be smoother in the time domain. In the spirit of 
§4.4, this approach can be generalized by considering an inner product which is a 
combination of the L2 and H^ terms, as this would allow us to focus the optimiza- 
tion on a specific range of time scales that are of interest in a given optimization 
problem. 

7    Discussion & Conclusions 

In this paper we have identified and related the four opportunities for generaliz- 
ing the formulation of an adjoint-based gradient optimization algorithm. The first 
opportunity concerns the choice of the specific form of the equation assumed to 
govern the system evolution. The remaining three opportunities are related to the 
choice of the norm, the duality pairing, and the inner product (collectively referred 
to in the paper as "brackets") on the three space-time domains that are of interest in 
a generic optimization problem applied to an unsteady PDE system. Most studies to 
date have used LQ. brackets on all three of these space-time domains. In the present 
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study we have explored formulations based on the more general Sobolev brack- 
ets, which include the Li brackets as special cases. Choosing an alternative form 
of the evolution equation together with the adoption of different Sobolev brackets 
has the effect of emphasizing or de-emphasizing different length- and time-scales 
in the definition of the cost functional, the adjoint operator and the associated ad- 
joint field, and the gradient of the cost functional. These opportunities allow one 
to fine-tune the optimization algorithm to specific the length- and time-scales of 
interest. By so doing, one may make the original PDE optimization problem more 
"regular", and thereby easier to discretize and solve numerically. 

The four regularization opportunities discussed in §4 fall into two categories: those 
that affect the descent direction (i.e., targeting the cost functional in §4.2 and pre- 
conditioning the gradient in §4.4), and those that affect the manner in which a given 
descent direction is computed (i.e., changing the form of the evolution equation in 
§4.1 and the duality paring in §4.3). In a discrete setting, all four of these oppor- 
tunities are significant, and the different opportunities may be used to amend the 
different elements of the algorithm. For example, gradient extraction performed us- 
ing an inner product which combines the H~\L2, and H^ brackets was shown to be 
equivalent to applying a suitable scale-dependent filter to the adjoint field. A low- 
pass filter of this sort is useful to employ when the high-frequency components 
of the system are somehow considered "less significant" during the optimization 
process in the multiscale system. In a data assimilation problem this could be the 
case, for instance, when one is attempting to obtain a long-term forecast, in which 
the smallest-scale variations of the initial conditions are thought to play a rela- 
tively unimportant role. On the other hand, a band-pass filter could be useful to 
employ when one is attempting to obtain a short-term "meso-scale" forecast, in 
which the small-scale variations of the initial conditions are again thought to play 
a relatively unimportant role and the large-scale variations of the initial conditions 
are determined by a separate (global-scale) optimization code. Alternative forms of 
the duality pairing may serve to define new adjoint operators and new adjoint fields 
which are better behaved from the point of view of the numerical implementation. 
In this way, one may obtain adjoint fields which are smoother and can therefore be 
satisfactorily resolved on coarser numerical grids. This opportunity can be very use- 
ful in applications to complex multiscale systems where only marginal numerical 
resolution can be afforded. It should be remarked that, even though the new ad- 
joint systems so defined may yield smoother adjoint fields, the equations governing 
such adjoint systems may themselves be more complicated and therefore more dif- 
ficult to implement. As indicated in the literature survey in §1, approaches related 
to some of the regularization options presented here had already been mentioned 
in earlier studies. The present paper examines in detail all of the different oppor- 
tunities and attempts to unify them into a coherent framework by highlighting the 
relations between the different possibilities. It is also shown how the more tradi- 
tional approaches based on Tikhonov regularization and inverse-Laplacian-based 
gradient smoothing fit into the present framework as special cases. 
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The presented framework opens up the possibility for adoption of a wide range of 
regularization strategies. In order to illustrate these opportunities in a clear and 
exhaustive fashion, we chose to analyze them in this work based on a simple 
Kuramoto-Sivashinsky model forecasting problem. Moreover, studying a spatially- 
periodic system allowed us to recast parts of the analysis in Fourier space, which 
facilitated drawing conclusions regarding spatial regularity of the various fields 
involved. We also addressed some of the issues arising when the framework pre- 
sented is extended to systems governed by more complicated evolutions equations 
(e.g., the 3D Navier-Stokes system), and systems evolving in bounded domains. In 
such systems, analysis is more difficult, but the fundamental concepts remain the 
same. A forthcoming paper will discuss the application of some of the regulariza- 
tion opportunities presented here to complex optimization problems involving the 
Navier-Stokes system in 3D bounded domains. 

The computational examples presented in this paper, while far short of exhaustively 
examining all of the various regularization opportunities, highlighted a few of the 
computational advantages inherent in the proposed framework. Based on a mod- 
ified inner-product definition used to extract the gradient, a physically-motivated 
multiscale preconditioning strategy was proposed which noticeably accelerates con- 
vergence of an optimization procedure applied to a nonlinear multiscale system. 
Adoption of similar approaches to the optimization of more complex systems of 
physical and engineering interest is currently underway. 

A   Adjoint derivation with the "//'-in-time" duality pairing 

We present here yet another way of deriving the adjoint operator, namely using the 
duality pairing of the form [cf. (22b)] 

(2l'22)    ,        ^ ^^^C ('''{^U\){^h2)dxdt. (A.1) 
\ / HP((),T-M{^))      Vo   70 

We will focus here on the case with p = l, and define the "anti-derivative" operator 
9,""^ as 

3-1^(^)4 fz[t')dt'- f z{t')dt'= f\{t')dt', (A.2) 
Jo Jo JT 

so that df^z{T) = 0 for any z{t). In order not to further complicate the notation, we 
will use the symbols L* and v* to also denote the new adjoint operator and the new 
adjoint variable. The adjoint identity has now the following form 

i'-'^'l = {L*v*,v') +bu, (A.3) 
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where 

L*v* = -dtv*+4dy + }c[dy-dr^{vdjcdjv*)],     and (A.4) 

bu = !£'' [{drv*)idrv') + {d,v*)d,ivv')+v'd;\vd,dy)] dx\ _ + 
-\x=2n 

x=0 

We now define the new adjoint system as 

ay(o,o = ay(27t,o, te[o,T], / = o,...,3,     (A.S) 
v*{x,T) = o, xea, 

which, when considering the spatially-periodic problem defined in §3 and combin- 
ing with (11), (A.S), and (A.2), allows us to re-express the differential (10) as 

From this we identify the L2 gradient in terms of the new adjoint variable as 

V^J/ = djv*      . 

We note that the new adjoint operator (A.4) and the RHS forcing term used in 
(A.S) have terms involving 3,""^ and are therefore non-local in time. However, as 
is evident from (A.2), at a given time instant t the operator dj'^ depends on its 
argument in the interval [t, T] only. Consequently, the system (A.5) can be marched 
backward in time (i.e. from T to 0) using conventional numerical time-marching 
methods. We also observe that, as compared to the primitive adjoint operator (16), 
the new adjoint operator (A.4) has a different "advection" term in which additional 
time derivatives and anti-derivatives are present. In this sense (A.4) is similar to 
(43), where the "advection" term includes additional space derivatives and anti- 
derivatives. Consequently, we can expect system (A.S) to produce adjoint fields 
which are more regular in the time domain (cf. §4.S.6). 
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The decay of stabilizability with Reynolds number 
in a hnear model of spatially developing flows 
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^Flow Control Lab, Dept. of MAE, UC San Diego, La Jolla CA 92093, USA, 
^LadHyX, Ecole Polytechnique-CNRS, 91128 Palaiseau Cedex, FRANCE 

This article characterizes the gradual decay of stabilizability with Reynolds number in the linear com- 
plex Ginzburg-Landau model of spatially developing flow systems when a single, spatially-localized 
actuator is used for applying the control forcing. It is shown that, technically, the system considered 
is linearly stabilizable for all actuator locations at any Reynolds number. However, as the Reynolds 
number is increased and an increasing number of modes of the open-loop system become unstable, 
the control authority on some of these open-loop unstable modes is found to be exponentially small. 
Using finite-precision arithmetic and any given numerical method for computing the feedback gains, an 
effective upper bound on the Reynolds number is reached, above which it is not possible to compute 
a linearly stabilizing control algorithm. This "effective upper bound", however, is not a fundamental 
characteristic of the system; rather, it is a persistent artifact of the numerical precision used in the 
controller calculation. The most suitable location for the actuator as the Reynolds number is increased 
is well predicted by analysis of the domain of support of the open-loop adjoint eigenfunctions. Further 
understanding is provided by analysis of the closed-loop system eigenfunctions, which are shown to 
become increasingly nonnormal as the Reynolds number is increased. 

Keywords: Flow control (47.62.-|-q), Instability of shear flows (47.20.Ft) 

1. Introduction 

Spatially developing open shear-flow instabilities have been extensively studied in the last fifteen years 
using the concepts of local and global instability (Huerre &: Monkewitz 1990). In the laboratory reference 
frame (chosen without ambiguity because of inlet conditions or the presence of a body in the flow), the 
existence of a mean advection velocity allows the local flow instabilities to be either of convective type, 
when the advection is strong enough to wash downstream all growing perturbations, or of absolute type, 
when the local flow instabilities grow in both the upstream and downstream directions. 

Flows displaying a sufficiently large region of local absolute instability will typically display self- 
sustained unsteadiness, as is the case with mixing layers (Huerre & Monkewitz 1985), jets (Monkewitz 
& Sohn 1988), and wakes (Monkewitz 1988). In such systems, when a physical bifurcation parameter 
(such as the Reynolds number) exceeds a critical value, an eigenfunction of the linearized governing 
equations, sometimes termed a linear global mode, is linearly unstable and thus small system distur- 
bances inevitably trigger unsteady flow behaviour. Due to stabilizing nonlinear effects, this unsteadiness 
typically "saturates" into a "self-sustained" finite-amplitude limit cycle, sometimes termed a nonlinear 
global mode. In the well-known case of the cylinder wake, self-sustained oscillations appear downstream 
of the body when the Reynolds number based on the cylinder diameter exceeds 47. In this system, the 
nonUnear global mode is referred to as the von Karman vortex street. 

t present address: Division of Engineering and Applied Sciences, Harvard University, Cambridge MA 02138, USA 
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2 E. Lauga & T.R. Bewley 

The important engineering consequences of delaying the appearance of self-sustained unsteady flow 
phenomena, and the recent successful control implementations in both experimental (Roussopoulos 
1993) and numerical (Park et al. 1994, Min & Choi 1999) investigations of such systems, has lead to 
the following fundamental questions: Is there an effective upper bound on the bifurcation parameter, 
above which the system can not be linearly stabilized with any control strategy for a given actuator 
configuration? If so, why? The present article is devoted to these two questions. 

2. The Ginzburg-Landau model of weakly nonparallel flows 

As a model of inhomogeneous, weakly nonparallel flows, the complex Ginzburg-Landau (CGL) equation 
has proven to be particularly well suited in several previous studies (see, e.g., Monkewitz et al. 1993 
and Pier k. Huerre 2001). In particular, the CGL model has proven to be accurate in determining 
global frequency criteria in both the hnear (Chomaz et al. 1991) and nonlinear (Pier et al. 1998) 
regimes. Moreover, because the CGL model roughly captures the streamwise structure of the system 
eigenfunctions and the variation of the complex frequency of these eigenmodes with Reynolds number, 
the CGL model has also allowed quantitative predictions of the effects of proportional feedback control 
on the actual flow system in several previous studies (Monkewitz 1989, 1993; Monkewitz et al. 1991; 
Roussopoulos & Monkewitz 1996). In the present paper, we thus consider the CGL model of the flow 
exclusively. By so doing, we may focus our attention directly on the fundamental issues responsible for 
the decay of stabilizability with Re in such systems. 

The linear CGL equation considered in this work models the time evolution of a perturbation 
quantity ^ in the presence of streamwise advection, amplification, diffusion, and control input: 

-^ + U-^=IJL^ + v^+5{x-Xf)u        ^ -g=Cil} + 5{x-Xf)u. (2.1) 

In order to model a wide range of spatially-developing flow systems, the coefficients /i = n{ex) and v 
in this equation are allowed to be complex. Note that the scalar control input u = u{t) is modeled 
as a pointwise forcing term a.t x = Xf. The amplification term in this model equation depends on an 
inhomogeneous local parameter ti{ex) analogous to the local Reynolds number based on, for example, 
the local diameter and velocity defect of a 3D bluff-body wake. In the present work, the spatial variation 
of this coefficient is assigned the form fiiex) = IM) — [^i^ — ^t)]"^, where the real parameter no is a global 
bifurcation pai'ameter analogous to the global Reynolds number based on, for example, the bluff-body 
dimension and free-stream velocity, and the small parameter e accounts for the slowly diverging charac- 
teristics of the basic flow. The spatial position xt, which is generally taken to be complex, is found by 
analytic continuation of local dispersion relations (Hammond & Redekopp 1997), and characterizes the 
hydrodynamic resonance phenomenon (Chomaz et al. 1991). The parabolic form used here is motivated 
by many previous studies which focused on the modelling of spatially developing flows (Chomaz et al. 
1987,1990; Huerre & Monkewitz 1990; Roussopoulos & Monkewitz 1996). Using this parabolic form, it 
was shown by Chomaz et al. (1987) that local instability appears in a finite region in the system when 
Ho > 0, this local instability being everywhere convective if no < Ha = U'^^(i')/4\u\'^, and absolute in 
a portion of the unstable region if no > fJ'a- Signiflcantly, the localized control forcing term applied to 
(2.1) does not change these local instability properties of the system, though it can substantially alter 
its global dynamics. 

The analytic solution (Chomaz et al. 1987) for the eigenmodes ipi^, t) = ^(a;)e^* of the unforced 
CGL equation is given by the countable set of eigenvalues A^ and corresponding eigenfunctions ^^(a;) 

Afc = /io - U^/iu - ei/i/2(2fc + 1) >. 

... rUx     e{x-xt)h^    If^^'V^'r <]       f ^ = 0,1,2,... (2.2) 
6(x) = exp[—-     ^^^^,    JH^41VJ     (^-^*)J      J 
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The decay of stabilizability with Reynolds number in a model of spatially developing flows 3 

where He/t designs the ifc'th Hermite polynomial. The first mode is Hnearly unstable [i.e., !ft(Ao) > 0] when 
the supercriticality S = (/io-A*c)//ic is positive, with Hc - Ha+e^Stiu^^'^). The fact that /x^ > Ha confirms 
the need for a sufficiently large region of local absolute instability to give rise to global instability 
(Chomaz et al. 1991). Note that the shapes of these modes do not depend on the global bifurcation 
parameter /XQ. 

The numerical values used in this paper aie U = 6, u = 1 - lOi, and Xt = O.li to be consistent 
with previous studies (Chomaz et al. 1987, 1990). The value e = 0.01 was chosen to represent a weakly 
inhomogeneous media, corresponding to a ratio of a typical local instability wavelength A to a global 
length scale L of X/L « 0.1. This choice is physically realistic; for example, inside the wake behind a 
rectangular body, this ratio typically varies between 0.05 and 0.2 (Hammond & Redekopp 1997). 

Designating by x. A, and B the spatial discretizations of the state variable ip, the Ginzburg-Landau 
operator C, and the Dirac delta function S{x - Xf) respectively, it is straightforward to represent a 
discretization of the CGL equation (2.1) in the standard state-space form 

x = Ax + Bu. (2.3) 

In the present work, an efficient spatial discretization of the CGL equation was achieved using a Fourier 
collocation method on a stretched grid clustered near the forcing location. Other numerical schemes 
were also implemented for comparison, and achieved the same results upon grid refinement. 

3. Stabilizability 

The CGL system (2.1) is termed "stabilizable" iff a control strategy coordinating u with ip can be 
found such that the controlled linear system eventually decays exponentially in time everywhere in 
space regardless of initial conditions. In the discrete setting, the system operator pair {A, B) in (2.3) is 
termed stabilizable iff a feedback rule u = A'x may be found such that all of the eigenvalues of ^4 + BK 
have negative real part. In the present section, we discuss three equivalent tests for determining whether 
or not the CGL system (2.1), or its discretization (2.3), is stabilizable: 

a) checking (analytically) whether or not the "controllability matrix" corresponding to the dynamic 
equation for the unstable modes of the system (2.1) has full rank, 

b) checking (numerically) whether or not the discretized optimal control problem given by mini- 
mization oi J = /Q°°(X*QX -I- vL*Ru)dt with feedback of the form u = Kx has a stabilizing solution, 
where Q > 0 and iZ > 0 and x and u are related by (2.3), and 

c) checking (numerically) whether or not a minimal-energy stabilizing control feedback rule may be 
found by pole placement, resulting in a closed-loop system matrix which reflects the unstable eigenvalues 
of A to the left-half plane and leaves the stable eigenvalues of A unchanged. 

(o) Analytic determination of the controllability of the unstable modes 

At any time t, the solution ■>p{x,t) of the CGL equation is spanned by the eigenfunctions £,K{.X), 

also known as "linear global modes" in much of the CGL literature. Recall that the (,K are available 
analytically, and the eigenvalues A„ are distinct. We now define the "adjoint eigenfunctions" 7/^(0;) (also 
known as "adjoint global modes" in much of the CGL literature) by changing {U,IJL,U} ->■ {—U,fi*,v*} 
in the unforced CGL equation, resulting in 
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and solving for the eigenmodes analytically, resulting in the complex conjugate of the eigenvalues found 
previously, A*, and the adjoint eigenfunctions 

»?«(-) =exp[-g-fc^]He„[(^)'^.-.n], « = 0,1,2,... (3.2) 

Defining the inner product (r?t,^„) = J^^'ilti^)^Kix)dx, note that 

(,.,£^„) = (r,.^«) = (AX,^«) = A.(,.,u 1   ^ "   ^'^^'^"^«^-°' 
and thus (TJ^CK) = 0 for t / K. Scaling the eigenfunctions appropriately, it follows that (J?I,^K) = ^tw- 

in order to establish a correspondence between the analytically-determined eigenfunctions and ad- 
joint eigenfunctions discussed above and the appropriately-defined discrete right and left eigenvectors, 
it is necessary to define a discrete scalar product x*Qx which is equivalent to its continuous analog, 
the inner product (rii,^^.) = X!° vti^)^K{x)dx. Using the definition of the (stretched) numerical grid 
and a trapezoidal integration rule, it is straightforward to compute the diagonal matrix Q > 0 which 
accomplishes this task. The discrete analog of the eigenfunction (KIX) is then found to be the /t'th right 
eigenvector of A, which we will denote r^''), and the discrete analog of the adjoint eigenfunction T]K{X) 

is the K'th left eigenvector of QAQ~^, which we will denote s^^^.f Using this definition, it follows that 

(sW)*QArW = (s(0)'QA«r(«) = A«(sW)*Qr(«) 1 U^COr OrW = 0 

(sW)*QArW = [(sW)*QAQ-i]QrW = A.(sW)*QrW   j      ^ «       '^^     ^ -^ 

and thus the discrete analog of the orthogonality property (??t,^K) = ^IK is the discrete relationship 
(sW)*QrW=5,«. 

Consider now a particular value of/io and Xf for which the CGL system has n unstable eigenmodes. 
Decompose tp such that 

n 

'^{x,t) = 'Y^ik{x)xk{t) + <f>{x,t)        with        (^eN(span{^i,^2,..-,^n}), 

i.e., (j> Ues in the nullspace of the space spanned by {^i, ^2, • • • i Cn}- Taking the inner product of the ad- 
joint eigenfunction T]K{X) with the CGL equation and applying this decomposition and the orthogonality 
property derived above, we obtain 

Vnix), -^ = jCip + S{x - Xf)u 
-^ = A«x« + {r]^{x),S{x-Xf))u 

= A„XK + J?K(a;/)w. 

Assembling these dynamic equations for all of the unstable modal coefficients XK in vector form, we 
obtain the diagonal system 

^ = AX + Bu, A= •.. , 5= :        . (3.3) 

\0 A„/ \VniXf)J 
t Note that the eigenvalues of the resolved modes of both A and QAQ~^ are accurate approximations of the 

analytically-determined eigenvalues in the continuous case in (2.2). Note also that, as is also true in the continuous 
case, all discrete left and right eigenvectors are enumerated by the real part of their corresponding eigenvalues in the 
open-loop setting, with the least-stable eigenmodes listed first. 
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This is an analytic expression of the dynamic equation for the unstable modes of the system. 
We now review the following facts: 

1) A system is state stabilizable iff all unstable modes are state controllable. _ 
2) (A, B) is state controllable iff the matrix C = [B   KB   h?B   ...   A"--^B) has full row rank. 

In the present case, as A is diagonal and Aj 9^ 0 Vi, it follows that C has full row rank iff the vector 
B has all nonzero entries. The adjoint eigenfunctions of the CGL equation, with the coefficients selected 
as described in §2, are nonzero everywhere on the real axis (their zeros lie in the complex plane). Thus, 
technically, the CGL system considered in this paper is stabilizable for any value of juo sund all choices 
of Xf. 

(6) Computation of optimal state-feedback control 

In the previous section, we showed analytically that the system under consideration is stabilizable 
for any value of fio and all choices of Xf. One might think that the issue of characterizing stabilizahility 
for the present system would be closed at this point. However the present control problem is found to be 
increasingly delicate to solve numerically as the Reynolds number is increased, to the point that incorrect 
conclusions about stabilizahility can be drawn from numerical calculations unless such calculations are 
interpreted properly. In the two sections that follow, we thus interpret the results from two different 
numerical characterizations of the stabiUzability property. 

We first attempt to compute stabilizing feedback for the discretized CGL equation using optimal 
control theory. This approach involves the choice of a quadratic cost function J weighing together a 
generalized state "energy" and a measure of the control effort: 

J= f    [x*Qx + u*i?u]dt. 

In the present work, we chose R = £'^1 and Q = Q (determined in the previous section) so that TC*QX 

is simply a numerical approximation of /^ \tp\^ dx. The design parameter i allows us to adjust the 
resulting control magnitude; in the limit that ^ ^ 00, the minimal-energy stabilizing control feedback 
is obtained. Optimal control theory allows us to compute the control forcing u that minimizes the cost 
function J. This solution is conveniently represented in the state-feedback form u = Kx, where the gain 
matrix K is computed using the unique positive-definite solution X to the algebraic Riccati equation 
(ARE) 

A*X + XA-XBR-^B*X + Q = 0        ^        K = -B*R-^X. (3.4) 

Optimal control theory provides an alternative method of determining the stabilizahility of the matrix 
pair {A,B), since, at least in theory (i.e., using infinite-precision arithmetic), a stabilizing positive- 
definite solution X to the matrix equation given above exists if and only if A is stabilizable by control 
input through B, independent of the choice of the positive definite weighting matrices R and Q. Thus, 
in theory, by determining whether or not a stabilizing positive-definite solution X to (3.4) exists, one 
may determine the stabilizahility of the Ginzburg-Landau operator by pointwise forcing and thus, by 
iteration, the maximum Reynolds number at which stabilization can be achieved. 

The algebraic Riccati equation (3.4) is typically solved using the Schur decomposition technique 
(Laub 1991). In the present case, this equation was found to become increasingly difficult to solve as 
the supercriticality is increased. Thus, three alternative methods for solving (3.4) were also implemented 
(see, e.g., Jamshidi 1980). As a first alternative, an eigenvalue decomposition technique was used instead 
of the Schur decomposition. As a second alternative we chose to transform the continuous-time Riccati 
equation (3.4) into the corresponding discrete-time Riccati equation, and to solve the latter using a 
doubling algorithm (Jamshidi 1980). Finally, we implemented a Newton-iterative algorithm to solve 
(3.4). In all cases, the results obtained agreed within ±6%. 
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Using double-precision arithmetic, an efFective upper bound on the supercriticaUty was determined, 
above which a stabilizing solution X > 0 to the ARE could not be found. This upper bound, which we 
denote S{xf), is a function of the forcing position Xf, and is displayed as the solid curve in Figure 1. 
This figure also indicates the boundaries (dotted) between the local instability regions and, for each 6, 
the position of the optimal actuator location (dashed) which results in the minimum value of the cost 
function J over all actuator locations tested. 

Somewhat surprising (and, perhaps, somewhat misleading) is the observation that the upper bound 
6{xf) indicated in Figure 1, above which a stabilizing solution to the ARE (3.4) could not be found 
using double precision arithmetic, appears to be quite independent of several choices in the formulation 
of the discrete optimal control problem, including: 

(1) the positive-definite weighting matrices Q and R, 
(2) the number of grid points N used (as long as AT is sufficiently large), 
(3) the numerical technique used to perform the spatial discretization, and 
(4) the numerical technique used to solve the ARE. 

For each actuator location Xf tested, all calculations of S{xf) agreed to within ±6%, even as the items 
listed above were varied. For the parameter values tested, the curve S{xf) reaches a peak value of 
6m = maxxf S{xf) = 5.3 ± 0.3 with the actuator location Xf = -47 ± 1. For 0 < 5 < 5.3, there exists a 
window of possible actuator locations (indicated by the solid line in Figure 1) inside of which stabilizing 
solutions of the ARE may be found using double-precision arithmetic. 

Significantly, the location of the upper bound above which a stabilizing solution to the ARE can 
not be found turns out to be a strong function of the level of numerical precision used in the solution 
of the ARE; a single-precision calculation of this curve is shown as the dashed Hne in Figure 1. In this 
case, the curve 5(xf) reaches a peak value of 5m = 1-9 ± 0.1 with the actuator location Xf = —23 ± 1. 
Thus, the "effective upper bound" for stabilizability so determined is not a fundamental stabilization 
limitation, but rather a persistent artifact of the numerical precision used in the solution of the optimal 
control problem. 

(c)  Computation of a minimal-energy stabilizing control feedback rule 

It is a classical result in control theory that, if a minimal-energy stabilizing control feedback rule is 
used, the eigenvalues of the stabilized closed-loop system A + BK are given by the union of the stable 
eigenvalues of A and the reflection of the unstable eigenvalues of A into the left-half plane across the 
imaginary axis. Since we know where the closed-loop eigenvalues of the system are in this case, the 
feedback gain matrix K may be computed by the process of pole assignment. As shown below, this 
leads to a simple closed-form expression for the minimal-energy stabilizing control feedback rule. 

(i) Review of the solution of the pole assignment problem 

In order to formulate the pole assignment problem, we first write down the Hamiltonian which 
eventually leads to the Riccati equation in the standard derivation of the LQR problem: 

(_V^-V)™  -  -©■ (3.5) 

where the desired eigenvalues of the closed-loop system, X^i, are listed on the diagonal elements of the 
diagonal matrix Ac/, and the corresponding eigenvectors of the Hamiltonian are given by the columns 
of V, which is partitioned as indicated. In the pole assignment problem, we prescribe the closed-loop 
eigenvalues A^ in advance, then compute the corresponding eigenvector matrix V. As with the formu- 
lation of the LQR problem, once this eigenvalue/eigenvector problem is solved, the desired feedback 
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rule is given by u = Kx with K = -B*R-^X, where X = -V2Vf^. Multiplying out (3.5), it is easy to 
show that 

and thus 

AV,-BR-'B*V2 = Vi\ci, 
-QV,-A*V2 = V2Aci, 

AQ-HA*V2 + ViAoi) + BR-'B*V2 = Q-HA*V2 + V2Aci)Aci, 

Vi = -Q-HA*V2 + V2A,i). 

(3.6a) 

(3.6b) 

(3.7a) 

(3.7b) 

As equation (3.7a) is linear in the unknown matrix V2, finding a nonsingular solution V2 to this equation 
amounts to a straightforward linear algebra problem. Once V2 is obtained, calculation of Vi is trivial 
using (3.7b) or, equivalently, (3.6a). Standard techniques to solve this problem in the general setting 
discussed here include those by Ackerman (1972) and Kautsky, Nichols, & Van Dooren (1985), and are 
well developed. 

(ii) Simplification of the linear algebra problem in modal form 

In the case in which we are simply trying to compute the minimal-energy stabilizing control feedback 
for the CGL system, the pole placement problem reviewed above can be simplified greatly. First note 
that, if 

/Ai 0\ Ml     i;i2    ...    1'ln\ 
A2 1^21      1*22      • • •     V2n 

and 

\0 Xj 

then the products AV and VA have special structure: 

V 

\Vnl     Vn2 '^nn/ 

AV = 

/Aiuii    A1W12 

A2U21    A2U22 

\A„t;„i    A„?;„2 

Ai«;i„\ 

A2U2n 

An'^nn/ 

and VA = 

(Xivn    A2W12 

Ali^21     A2U22 

\AlUnl      A2t'n2 

Anl'ln\ 

A„f2i 

We now consider the pole placement algorithm applied to the equation for the unstable dynamics of 
the CGL system in modal form, determined analytically in_(3.3). Partitioning V2 into its respective 
columns, V2 = (^^^^ ^^^^ ... ^(")), taking A = A, B ^ B,Q = I, R = i^I, and A,, = -A*, and 
applying the above relationships, it follows that (3.7a) may be written as 

[-BB7^2 ^diag(4*\4'\---.4*^)K'*' A MW^W ^ 0, 

where 

S''^ = -\iyi + \i\l + \l\l-\t\li^Q 
0 

for i 7^ fc 
for i = k. 

Thus, the vectors ^^^^ lie in the nullspace of M^''\ and may be found by the process of Gaussian 
elimination, manipulating M^*) to reduced row-echelon form. In the limit i -> 0, M^^^ approaches a 
diagonal matrix with a zero in the fc'th diagonal element, and thus V2 —^ I. In order to avoid taking 
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the difference of two quantities which are almost equal in the computation of Vi, we return to (3.6a), 
which we may now write in the form 

AT^i + FiA* = BB*/e'^ = C/f. 

Defining now the {i, j}-component of Vi as Vij, it follows immediately that vij = Cij/[(Ai + A^^^] = 
fijie. With Vi = F/^2 and V2 = I, it follows that X = -flP-'^ and thus K = -BXI^ = -B*F-'^A. 

The resulting closed-form solution for the minimal-energy stabilizing control feedback is now sum- 
marized. 

Theorem 3.1. Consider a stabilizable system with no pure imaginary open-loop eigenvalues, for which 
the dynamics of the unstable modes of the open-loop system may be written in the form x = ^X + 
Bu, where the diagonal matrix A contains the unstable eigenvalues of the open-loop system, which are 
assumed to be distinct. Define C = BB*, and compute a matrix F with components fij = Cjj/(Ai -f Ap. 
The minimal-energy stabilizing feedback controller is then given by u = Kx, where K = B*F''^. 

Proof. Follows immediately from the derivation presented above. □ 

In the continuous setting, by the modal decomposition and orthogonality property developed in §3a, 
Xk = (''lk,'>P), 3Jid thus the control feedback in the continuous setting is 

u = K 

In the discrete setting, the corresponding modal decomposition and orthogonality property leads to 
Xk = (s(*))*Qx, and thus the corresponding control feedback rule in the discrete setting is 

u = i("x        where        K = KS*Q        and        S = (sW    s^^)    ...   s^). 

(iii) Numerical results 

The closed-form solution for K described above was applied to the modal form of the CGL equation^ 
which may be determined analytically [see equation (3.3)], for a variety of values of supercriticality 6 
and forcing locations Xf. Remarkably, numerical calculations of the minimal-energy stabilizing control 
feedback were found to break down (failing to provide a stable closed-loop system matrix A + BK) 
for values of 8 and Xf which accurately coincide with the effective upper bounds for stabilizability 
obtained by solving the Riccati equation (3.4), as displayed on Figure 1, using both single- and double- 
precision arithmetic. We reach the same conclusion as in the previous section: the stabilizability Umit so 
determined is not a fundamental stabilization limitation, but a persistent artifact of the finite precision 
arithmetic used in the numerical computations. 

4. Actuator placement 

It is well known that adjoint eigenfunctions, when properly defined, have a direct relation with the 
sensitivity of the corresponding system eigenfunctions to appUed forcing. Chomaz et al. (1990) quan- 
tified this property in the case of the CGL equation, showing that the amplitude of the n'th adjoint 
eigenfunction at a given position represents, in a quantifiable manner, the magnitude of the response 
of the n'th system eigenfunction to small amounts of actuator forcing at this location. Recall that the 
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adjoint eigenfunctions are the system eigenfunctions for the adjoint CGL equation, which may be ob- 
tained simply by changing {U,n,u} to {-U,n*,u*} in equation (2.1). Because of the change of sign 
in the advection term, the support of the adjoint eigenfunctions [which is straightforward to calculate 
using equation (2.2)] typically lies upstream of the peak of local instability in the CGL system. 

We now extend this analysis to the closed-loop setting and to the case in which many system eigen- 
functions need to be stabilized. As mentioned previously, the amplitude of each adjoint eigenfunction 
along the x axis may be interpreted as the sensitivity of the corresponding unforced system eigen- 
function to small amounts of control forcing as a function of the forcing location. Thus, in order to 
stabilize several unstable system eigenfunctions, it is necessary that the actuator lie within the domain 
of support of each of the corresponding adjoint eigenfunctions. As several of these domains of support 
overlap (Figure 2), it is possible to stabilize several unstable system eigenfunctions simultaneously with 
a single, appropriately-situated, localized actuator. 

Note that, to stabilize a particular mildly unstable system eigenfunction, it is not necessary that 
the actuator be located near the maximum amplitude of the corresponding adjoint eigenfunction; this 
only denotes where the influence of a small amount of forcing on the system eigenfunction is maximum. 
Thus, as indicated in Figure 1, in the slightly supercritical case (0 < S <^ 1), the window of actuator 
locations which can be used to stabilize the system extends well into the locally stable regions of the 
system, far upstream and downstream of the maximum of the first adjoint eigenfunction located at 
X = -12.8. In this case, the optimum location for the actuator for minimizing J (illustrated by the 
dashed line in Figure 1) is Xf = -11.6 ± 0.7, which is slightly downstream of the maximum of the first 
adjoint eigenfunction; a similar result was observed by Chomaz et al. (1990). 

Theoretically (i.e., using infinite-precision arithmetic), the adjoint eigenfunctions are never exactly 
zero on the real axis in the present system. Thus, the present system should be stabilizable for any values 
oi fj-o and Xf, as discussed in §3a. However, as illustrated in (3.2), each adjoint eigenfunction decreases 
to zero exponentially away from its maximum. Thus, the control authority of localized forcing on the 
unstable eigenfunctions becomes exponentially small far from the maximum of the corresponding adjoint 
eigenfunctions. As a consequence, using finite precision arithmetic, effective controls may be computed 
for only a limited range of values of both /UQ and Xf. 

Figure 2 indicates the "principle support" of the first 14 adjoint eigenfunctions, where the "principle 
support" n is defined as that region, centered at the maximum value of the adjoint eigenfunction, which 
contains 99% of the energy of that adjoint eigenfunction (that is, J^ |r;„pda; = 0.99/^ |?7Kpda;). 
It is seen that the first system eigenfunction for which the principle support of the corresponding 
adjoint eigenfunction does not have an intersection with the principle support of the previous adjoint 
eigenfunctions is the fourteenth, and that this eigenmode goes unstable in the uncontrolled CGL system 
when S = 5.42. This value compares fairly well with the effective stabilizability limit obtained with 
double precision arithmetic, 5m = 5.3. The intersection of the supports of the first thirteen adjoint 
modes extends from x = —50.4 to x = —47.8, which also compares favorably with the optimum forcing 
location Xf = -47 ± 1. 

Figure 3 indicates the principle support of the first 22 adjoint eigenfunctions when the definition of 
"principle support" is modified to be that region which contains 99.9% of the energy of each adjoint 
eigenfunction. It is seen that, in this case, the first system eigenfunction for which the principle support 
of the corresponding adjoint eigenfunction does not have an intersection with the principle support of 
the previous adjoint eigenfunctions is the twenty-second, and that this eigenmode goes unstable in the 
uncontrolled CGL system when 6 = 9.17. 

We thus see that studying the degree of overlap of the "principle support" of the adjoint eigenfunc- 
tions corresponding to the open-loop unstable system eigenmodes provides valuable insight into the 
reason for the "effective stabilizability limit" of the system when controls are computed using finite- 
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precision arithmetic. However, such a characterization in itself does not provide a quantitative prediction 
of this bound, as it depends on the definition of the "principle support" of the adjoint eigenfunctions. 

5. Nonnormality of the closed-loop system 

The previous section discussed an open-loop characterization of an effective stabilization limitation based 
on the overlap of the "principle support" of the adjoint eigenfunctions corresponding to the unstable 
modes of the system. This is an a priori analysis technique in the sense that it can be performed before 
any control algorithm is actually computed. An o posteriori observation of the closed-loop (controlled) 
CGL system can also be used to improve our understanding of this Umitation. 

As mentioned previously, when an unstable system matrix A is stabilizable by control input through 
B, the minimal-energy stabilizing control feedback {i.e., the optimal control feedback computed in 
the limit of large £) will leave the stable eigenmodes of the system unchanged, and will reflect the 
unstable eigenvalues of A across the imaginary axis. Recall from §2 that the eigenvalues of the open- 
loop CGL equation may be computed analytically. The symmetric reflection property of the minimal- 
energy optimal control solution is illustrated in Figure 4, taking £ = 10* and S = 3, for the first twenty 
eigenvalues of the CGL equation. In this minimal-energy optimal control setting, it is quite easy to 
track numerically the effect of the control on each individual system eigenfunction. 

Figure 5 displays the amplitude of the two most unstable open-loop eigenfunctions before and after 
control is applied for several values of 5, again taking i = 10*, with double precision arithmetic. The 
discontinuity in slope of the closed-loop eigenmodes is due to the Dirac delta function introduced in 
the CGL equation as the forcing. The main point of Figure 4 is that, though the amplitudes of the 
two modes are of quite different shape before application of the control, in the closed-loop setting 
(after application of the control) they tend toward the same shape as 5 increases; this property is also 
observed for the phase of the two modes. Since the corresponding eigenvalues remain well separated 
even in closed loop (see Figure 4), the closed-loop system becomes what has become known in the fluid 
mechanics community as a "highly nonnormal" operator. In this situation, a particular (destructive) 
linear combination of these two stable eigenmodes as an initial condition can have almost zero initial 
energy, but can lead to very large transient energy growth, possibly triggering nonlinear instability. 
Characterizations of both open-loop and closed-loop system nonnormality have recently received a 
tremendous amount of attention in the fluid mechanics community (see, e.g., Butler & Farrell 1992, 
Trefethen et al. 1993; Bewley & Liu 1998; Bamieh &: Dahleh 2001; Schmid & Henningson 2001). In 
the present problem, such a characterization allows interpretation of the stabiUzation limitation as an 
approach toward a defective closed-loop system matrix A + BK. 

Table 1 displays the scalar products of the first system eigenfunction with the following four sys- 
tem eigenfunctions (ordered by the real part of their open-loop eigenvalues), before and after control 
is applied, for various values of the supercriticality 5. These five eigenfunctions become numerically 
indiscernible with double precision arithmetic when 5 = 5.20 ± 0.2. (The uncertainty accounts for 
the difficulty of precisely resolving the eigenvectors close to the stabilization limitation.) This result 
coincides closely with the stabilization limitation, 8m = 5.30 ± 0.3. 

6. Discussion 

A potentially important role for control theory in fluid mechanics is the prediction and characterization 
of fundamental performance and stabilization hmitations inherent in fluid-mechanical systems. Such 
limitations are independent of the particular control approach chosen, and thus provide a priori esti- 
mates as to the possible engineering benefits that might be realized in the search for effective control 
strategies. The present paper represents one of the first attempts to quantify such a fundamental lim- 
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itation in a spatially-distributed model of a fluid-mechanical system. The Complex Ginzburg-Landau 
equation was chosen as a model of inhomogeneous weakly non-parallel flows, and the focus of the article 
was placed on the fundamental issues pertaining to the decay of stabilizability with Reynolds number. 
The main results of the present paper are: 

1) The chosen system is (theoretically) linearly stabilizable for all values of the bifurcation parameter 
and the forcing location. However, finite-precision numerical computations of both the optimal control 
feedback and the minimal-energy stabilizing control feedback display an effective stabilizability limit. 
The eflFective stabilizability limit so obtained appears to be fairly independent of the weights chosen in 
the formulation of the control problem and the numerical methods used for both the discretization of the 
system and the solution of the result control equations. This apparent limitation, though persistent, is 
simply an artifact of the numerical precision chosen, and changes significantly when a diff'erent numerical 
precision is used. As a consequence, it does not represent a fundamental feature of the system considered. 

2) An open-loop analysis based on the overlap of open-loop adjoint eigenfunctions allows approx- 
imate identification of the optimal actuator placement for minimization of the cost function and a 
characterization of a fundamental closed-loop property, that is, the limiting Reynolds number beyond 
which stabilizability of the system breaks down. This characterization is a function of the definition the 
"principle support" of the adjoint eigenfunctions, and thus does not reveal a quantitative prediction of 
this effective limitation, which itself is a function of numerical precision used. Though not presented 
here, further numerical calculations show that the optimal actuator placement and characterization of 
the effective stabilization limitation in the case of two actuators follows in a similar fashion. 

3) An examination of the eigenmodes of the closed-loop system reveal that loss of stabilizability in the 
system considered as the bifurcation parameter is increased is characterized by heightened nonnormality 
of the closed-loop eigenmodes and an approach toward a defective closed-loop system matrix A + BK. 
As the effective stabilization limitation is approached, the shapes of the leading closed-loop system 
eigenfunctions become numerically indiscernible. 

The linear CGL equation studied in the present paper approximately models small perturbations of 
spatially-developing flow systems over only a limited range of Reynolds numbers. The conclusions about 
high-Reynolds number behavior drawn from the present study of the linear CGL equation are thus not 
directly applicable to real flow systems. However, the linear analysis approaches developed in the present 
paper extend naturally to the study of both stabilization and detection (that is, the stabilization of 
estimation error) in a range of spatially-developing flow models, including linearizations of the full 3D 
Navier-Stokes equation itself. In such systems, the system eigenfunctions and adjoint eigenfunctions 
are generally not available analytically. However, the leading eigenfunctions and adjoint eigenfunctions 
(that is, those corresponding to the open-loop unstable eigenvalues) may be computed numerically using 
the implicitly-restarted Arnoldi method applied to standard computational fluid dynamics (CFD) codes 
which accurately model the flow and adjoint systems of interest. Extension of the analysis approaches 
developed in the present paper to more physically-relevant numerical models of spatially-developing 
flow systems is thus straightforward; a few such extensions are currently well underway, and will be 
reported in a forthcoming paper. The three main results of the present study, as itemized above, are also 
expected when the same analysis approaches are applied to higher-fidelity models of spatially-developing 
flow systems which exhibit similar dynamics, such as jets and wakes. Specifically, in such systems, it is 
anticipated that: 

i) Linear stabilizability/detectability is lost gradually as the Reynolds number is increased. That 
is, there is no critical Reynolds number above which such systems fundamentally become linearly un- 
stabilizable/undetectable. However, practically speaking, linear stabilization/detection of such systems 
becomes impossible at sufficiently high Reynolds number. 

ii) Analysis of the overlap of the open-loop adjoint eigenfunctions corresponding to the open-loop 
unstable eigenvalues reveals effective actuator locations for the linear stabilization of the system. 
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iii) The linear closed-loop system becomes increasingly non-normal as the Reynolds number is in- 
creased. The approach towards loss of stabilizability (or detectability) is accompanied by an approach 
towards a defective closed-loop system matrix A + BK (or A + LC) regardless of the control design 
technique used. 

The identification of these inherent properties in high-fidelity models of spatially-developing flow 
systems should provide us with important new insights in the design of effective control strategies. 

The authors gratefully acknowledge meiny fruitful discussions with Jean-Maxc Chomaz, Carlo Cossu, Frangois 
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Figure 1. Effective upper bound 5{xf) of supercriticality 5 above which a stabilizing solution X > 0 to the ARE 
could not be found using (solid) double precision arithmetic and (dot-dashed) single precision arithmetic. Also 
indicated (dashed) is the optimal actuator location (as a function of 6) for minimization of J, taking Q = Q 
(defined in §3a); this curve was found to be essentially independent of both £ and the level of numerical precision 
used. The boundaries between the different local stability regions are indicated by the dotted lines (S: stable, 
CU: convectively unstable, AU: absolutely unstable). 
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Figure 2. Principle support of the first 14 adjoint eigenfunctions 7;^ as a function of x. The lower edge of each 
bar demarks the supercriticality S at which the corresponding system eigenfunction becomes unstable. The 
horizontal extent of each bar demarks the region which contains 99% of the energy of each adjoint eigenfunction 
centered around its maximum vEilue; each bax includes a portion which has a non-zero intersection with the 
support of all the adjoint eigenfunctions below it (light grey) and a portion outside of this intersection (dark 
grey). The stabilization limitations using single- and double-precision arithmetic from Figure 1 have been added 
for interpretation, as well as the optimal actuator location. 
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Figure 3. Same as Figure 2, with the principle support redefined as the region which contains 99.9% of the 
energy of each adjoint eigenfunction. 
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Figure 4. Locus of the first twenty eigenvalues of the CGL operator with supercriticality 5 — 3 before (+) and 
after (o) optimal control is applied (with i = lO* and Xf = 47). Note that, in this minimal-energy optimal 
control setting, the stable eigenmodes of the system matrix are unchanged, and the unstable eigenvalues of the 
system matrix are reflected across the imaginary axis. 
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(a)     0.1 ■ 

(b)     0. . 
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(g)        0 

Figure 5. Amplitude of the two most unstable open-loop eigenfunctions (dashed) before and (solid) after optimal 
control is applied for seven values of the supercriticality S (with £ = 10'*, Xf = —47, and double-precision 
arithmetic). Left, most unstable open loop eigenfunction; right, second most unstable. The eigenmodes are 
scaled to be of unit norm (that is, \{4>„4>,}\ = 1).S= (a) 0.01, (b) 0.25, (c) 0.5, (d) 0.75, (e) 1, (f) 2.5, (g) 4. 
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S \{h,4>l}\        \{4>0,4>2}\        \{4>0,4>3)\        1(^0,^4)1 
0 0.6567 0.5028 0.3558 0.2431 
1 0.9549 0.3292 0.1037 0.0548 
2 0.9291 0.4964 0.3826 0.2790 
3 0.9980 0.9804 0.8411 0.4677 
4 0.9999 0.9973 0.9924 0.9411 
5 0.9999 0.9999 0.9979 0.9930 

5.1 0.9999 0.9999 0.9992 0.9988 
5.2 0.9999 0.9999 0.9999 0.9999 

Table 1. Scalar product of the most unstable open-loop eigenfunction 4>o with the following four most unstable 
open-loop eigenfunctions ^i, 4>2, 4>3 ^^d ^* after optimal control is applied as a function of the supercriticality 
S (with £= 10*, Xf = —47, and double-precision arithmetic). The modes are scaled to be of unit norm. 
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Noncooperative optimizations of controls for time-periodic 
Navier-Stokes systems with multiple solutions 

Thomas R. Bewley^*and Catalin Trenchea^'^''' 
^Dept. of MAE, UC San Diego, La Jolla, CA 92093-0411 USA 

^Institute of Mathematics of the Romanian Academy, 6600 la§i, Romania 

Time-periodic systems governed by differential equations are somewhat difficult to consider 
in the numerical setting because they may possess many solutions. The number of solutions of 
such systems may be finite or infinite. Further, some trajectories which are exactly time-periodic 
over a given period might only approximately solve the governing equation, whereas nearby tra- 
jectories which exactly solve the governing equation might only be approximately time-periodic 
over the given period. The difficulty of the time-periodic setting is compounded in the case of 
systems governed by the Navier-Stokes equation, as the solutions of such systems in the time- 
evolving setting may be chaotic and multiscale. When considering the optimization of controls 
for such systems in the time-periodic setting, the situation is thus particularly delicate, as one 
doesn't know a priori which time-periodic solution (or approximate solution) one should design 
the controls for. 

In the present work, the idea of noncooperative optimization is applied in an attempt to de- 
velop a tractable framework to solve the problem of optimization of controls for time-periodic 
Navier-Stokes systems. The noncooperative aspect of the optimization, however, is somewhat 
nonstandard: the best controls are found for the worst (of the many) time-periodic solutions 
of the governing equation. As the number of solutions may be finite, we have employed a 
technique developed by Barbu (1998) of first looking at a suitable approximation of the time- 
periodic system of interest with an infinite number of solutions, finding the solution to this 
approximate system with a gradient-based algorithm leveraging an adjoint analysis, then refin- 
ing the level of approximation until we have solved (with a sufficient level of accuracy) the 
optimization problem we are actually interested in. The present brief note motivates this work, 
presents the structure of our analysis, and outlines the resulting numerical algorithm. A future 
paper (under preparation) will describe our mathematical proofs of the associated thoerems in 
detail and present some preliminary numerical results. 

Introduction 
AN essential ingredient which is fundamental to the 

numerical study of the very physical problem of near- 
wall turbulence is the very artificial assumption of spatial 
periodicity (see, e.g., Kim, Moin, & Moser 1987). It is 
well known in the numerical simulation literature that even 
though this assumption is highly artificial, it has little to 
no effect on the quantities of interest in the system (that 
is, the statistics of the near-wall turbulence) if the problem 
is formulated correctly (that is, if the computational box is 
chosen to be large as compared with the correlation length 
scales of the turbulence). 

A possible generaUzation of this technique is to assume 
time periodicity in the numerical model of the physical sys- 
tem over a time period which is long with respect to the 
correlation time scales of the turbulence. Such a technique 
has the attractive feature that spectral methods may be used 
in time, affording a high degree of accuracy with a small 

*bcwlcy@ucsd.edu 
'''trcnchea@tu rbulcncc.ucsd.edu 

number of discretization points in time and obviating the 
need for a CFL constraint on the timestep to insure numer- 
ical stability. However, this assumption converts a smaller 
problem which evolves parabolically in time into a much 
larger problem which is elliptic in both space and time, ne- 
cessitating a large, stationary, four-dimensional problem to 
be solved with a multigrid-type strategy. For this reason, in 
addition to the several disadvantages mentioned in the first 
paragraph of the abstract, the time-periodic framework has 
not found favor in the turbulence simulation literature. 

Many fluid-mechanical systems of physical interest, 
such as jets and wakes, are dominated by the approximately 
time-periodic phenomenon of vortex shedding. Flow sys- 
tems dominated by such behavior are typically character- 
ized in numerical simulations by marching the governing 
equations in time (from random initial conditions) until 
the flow reaches an approximately time-periodic statistical 
steady state. For representative examples of such numeri- 
cal simulations, see the cylinder wake flow simulation of 
Kravchenko & Moin (20(X)) and the turbulent round jet 
flow simulation of Freund (2001). Time-periodic simula- 
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tions for periods which are large with respect to the shedding period, if they could be made numerically tractable, would 
certainly be able to capture the quantities of interest in such systems. In fact, one might even hypothesize that time-periodic 
simulations which are only a few integer multiples of the shedding period might also capture these systems with adequate 
fidelity. 

In the setting of the iterative optimization of controls for flow systems dominated by time-periodic behavior (a setting 
which is receiving a growing amount of interest for a variety of engineering systems), an important new consideration is 
introduced: that is, after each small update of the controls, a very good initial guess for the entire trajectory of the controlled 
flow system is known (i.e., the flow solution before the control was updated). Unfortunately, the time-evolving numerical 
model can not easily take advantage of this information. To evaluate the effect of the control update on the system using 
the time-evolving model, the entire system must again be marched in time towards statistical steady state. 

Fortunately, the time-periodic numerical model can take advantage of the knowledge of this nearby periodic orbit. A 
very small number of multigrid cycles (perhaps a single W cycle, depending on the scheme implemented) would be needed 
to update the entire flow solution (over the whole domain of space-time under consideration) when the change to the control 
distribution is small. This represents a distinct advantage for the time-periodic numerical model when it is to be used as the 
core of an iterative optimization algorithm. This advantage may indeed tip the scales in favor of such a numerical model 
in future numerical optimization of controls for such systems. 

However, the mathematical infrastructure for the adjoint-based optimization of controls for time-periodic Navier-Stokes 
systems is not yet in place. In fact, in the standard setting for adjoint analysis of fluid systems (see, e.g., the seminal work of 
Abergel & Temam 1990), it is not obvious even how to formulate the present problem. We believe that valuable insight into 
this very practical problem can be gained via mathematical analysis before jumping into large numerical simulations which 
may or may not converge. The insight we seek includes how to approximate the present optimization problem in order to 
make it manageable, how to compute the relevant gradient information, how to select which flow solution to optimize for 
(recall that time-periodic systems in general have multiple solutions), how to refine the level of approximation, and how to 
insure convergence to a relevant and useful solution. 

Complete mathematical analysis of this problem is beyond the scope of this note, and will appear elsewhere. What 
appears below is a brief skeleton of this analysis with all mathematical proofs and much of the precise mathematical 
characterization removed. We hope that such a brief presentation might be useful to introduce to the aeronautics and 
astronautics engineering community a summary of where we are going with this new class of Navier-Stokes optimization 
problems. 

1    Mathematical setting 

We are controlling the worst case that appears due to the nonuniqueness of the solutions to the time-periodic Navier-Stokes 
equation. More precisely, for the cost functional 

(1.1) /(«,([)) = 1 f {Qu{x,t)fdxdt+ f h{<^it))dt 
2JQ JO 

we compute the 

(1.2) Inf       Sup  /(M,(()) 

subject to 

(1.3) ^ -I- (M • V)M - VAM + Vp = B2<t> + /O in ii X R 
at 

W-u = OmQxR;u = OmdnxR 

u{x,t) =^u(x,t + T), V(x,r) eQxR. 

Here Q = Q.x (0,7), £1 is an open bounded subset of R^ with smooth boundary 9Q, /o € L^(R;Lp-(Q.)) is a T-periodic 
source field, u(x,t) = (u] {x,t),U2{x,t)) is the velocity vector, p stands for the pressure, while (j) € L^„^(R;L^(Q)) is a T- 
periodic input. We denote by U the real Hilbert space of controlers, Bj is a linear continuous operator from U to L?{Q.)^ 
and h a lower semicontinuous, convex function on U . Finally, C\ is a unbounded operator in L^{Q)^ satisfying 

(1.4) / (CMx)fdx <a f u(x)^dx+^ f iVu(x)f-dx. 
Jci Jn Jn 
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In particular, 
C] =d]I=^ regulation of turbulent kinetic energy, or 

C] = rfaVx =^ regulation of the square vorticity. 

We shall briefly recall the setting of (1.3) as an infinite-dimensional differential equation (see [6]-[9]). Let V be the 
divergence free subspace of HQ (fi)^, i.e. 

V = {ueH^(Q.)^; V-M = 0} 

and 
H = {ueL'^{Q.f; V-u = OmQ; n-u = OmdQ.}. 

The space H is endowed with the usual L^(i2)^-norm denoted | ■ | and V with the norm || • || defined 

ll«IP=    E    /   IV«;p£?X, « = («!,M2). 

If we denote V* the dual of V and identify H with its own dual, we have VCHcV^LetAe L{V, V*) andb:V xV xV 
be defined by 

(1.5) (Au,v)= f  Vui-Vvidx, yu,veV 

^   r   3v ■ 
(1.6) b(u,v,w)= y   / Ui^Wjdx,      '^U,V,WGV 

,■ y^i Jn    axi 

andB:V xV ^V* given by 
{B{u,v),w)=h(u,v,w) V«,v,weV 

B{u) = B{u,u), Vu€V. 

We set D(A) = {u£V;Aue H} and denote again by A the restriction of A to H. Recall that b defined in (1.6) is a trilinear 
continuous functional satisfying (see [8]-[9]) 

b{u,v,w) =—b{u,w,v)   Wu,v,w£V, 

|^(",V,W)|<C(|M|||«|||W|||W||)'^^||V||   'iu,v,w£V 

l%,v,w)|<c(H||«||IMIH)'/^H 
VMSV, V£D(A), weH. 

Let f{t) = Pfoit) and 'Bz € L(U,H) be given by Sj = PB2, where P : L^(n)^ -> // is the projection on H. Now we can 
write the state equation (1.3) as 

(1.7) ^(0+vA«(f)+B«(f) = «2^(f)+/(r) te{0,T) 

u(0) = u{T). 

Problem (P) 
We shall confine to solutions u in (1.7) which satisfy the condition 

M e W^'^{[0,T];H), Au e L\0,T-H), BU e L^(0,T;H) 

and we may reformulate the problem (1.2) as 

(P) Inf Sup r (l-\Qu{t)\'^ + h(<^(t)))dt 
^    u   Jo    \2 ) 

over (M,(t)) € (iy''2([0,r];//)nL2(0,r;D(A))) x L^{Q,T;U) subject to (1.7).  We have denoted by W^''^{[0,T];H) the 
space of all absolutely continuous functions M : [0,7] -> // such that u' = du/d/ e L^(0, T;//). We have 

W''^(0,r;i/)nL^(O,r;D(A))cC(O,r;y). 
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2 Existence of optimal solutions 

We consider first the inner problem 

(2.1) Maximize   /   -\C]u{t)rdt 
u        Jo   2 

for all u e W^''^{[0,T];H)nL^{0,T;D{A)) satisfying (1.7), while (j) G L^{0,T;U) is fixed. 

Proposition 2.1 Pmblem{2.\) has at least one solution u^ £W^''^{[0,T];H)nL?-{0,T;D{A)). 

Proof. ... (proof to be presented elsewhere)... D 
We shall study now the existence in problem (P). Assume that 

(i) The function h:U^Ris convex, lower semi-continuous and satisfies the coercivity condition 

K<t>)>«l<t'ly + P. V(l)Gi/ 

for some CO > 0, P G R. 

Theorem 2.1 Under hypotheses (i), (1.4) problem (P) has at least one solution. 

Proof. ... (proof to be presented elsewhere)... Q 

3 Approximation of Problem (2.1) 

Due to the genericity properties of the time-periodic Navier-Stokes equation (see [10], [11]), it is difficult to derive a 
gradient algorithm based on adjoint field information for problem (P). The main obstacle is this: the application ^^u{^) is 
neither differentiable, nor continous. In fact, the result mentioned above states that, for a dense set in L^(0, T;H) 9 f+ (Bi^, 
equation (1.7) has a finite number of solutions, which is constant on every connected part of this set. Therefore, for a small 
variation of <^, the number of solutions to (1.7) may vary to infinity. 

Thus, let consider first the approximate inner problem, which in the appropriate limit, approaches the solution of (2.1). 
To accomplish this, consider the maximization of 

(3.,) ^'(>|C,.P-1|6|«)., 

overu G W^'\[Q,T]\H)rM^{Q,T;D{A)), ^ G L^{QJ;H) subject to 

(3.2) ^(O+vA«(O+B«(O = «20(O+/(O + ^(O t€{0,T) 

u{Q)=u{T). 

Lemma 3.1 For each £. > 0 sufficiently small problem (3.]) has at least one solution (ME,^E)- 

Proof. ... (proof to be presented elsewhere)... □ 

Proposition 3.1 For E-¥0,we have 

«£ -)■ M* strongly in L?{0,T;V)nCi[0,T];H) 

e-^^% -^ 0 weakly in L^{0,T;H) 

limSup(3.1)= Sup(2.1). 

Proof. ... (proof to be presented elsewhere)... Q 

Proposition 3.2 //"(UEJ^E) « an optimal pair in problem (3.1), then there is q^ G W''^([0,7'];//) C\L'-{Q),T\D{A)) such that 

(3.10) -q'^{t)+vAq^{t)+B'{u^{t))*q^{t)=C\C\u^{t), a.e. t G (0,7) 

^E(O) = q^{T) 

(3.11) l^{t)=Eq^{t),a.e.t£{Q,T). 
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Rers B'{u^{t)), B'iueit))* e LiV,V*)nL{DiA),H) are defined by 

(B'(ue)z,vf) = b{z,UE,w) + biUi,z,w), Vz € D(A),w G H 
(3.12) 

iB'{u^)*q,w) = b{w,u^,q) + b{u,it),w,q), Wq £ D{A),w £ H. 

Proof. ... (proof to be presented elsewhere)... □ 
Remark. From Propositions 3.1,3.2 we have 

Sup(2.1) = limSup(3.]) = lim [   (-\Qu^f-%e\Adt 
u e->0 „_^ e-)Oyo    \2 2 / 

where («£,?£) satisfies 
'  4 + vAUi + B{uE) = ®2(t) + / + e9E, «e(0) = Me(r) 

-q'^ + vAqe + B'iueYq^ = qQu^, ^e(O) = qeiT). 

Therefore we can develop an algorithm that computes, for a fixed (]), a solution of maximum energy in the sense of (2.1) to 
the time periodic Navier-Stokes equation (1.7). 

4   Approximation of Problem (P) 

For each e > 0 consider the following optimization problem: minimize 

(Pe) Mu^q^A) = [ Q|C,«e|' + /i((^) - \\q.?^ dt 

over(ME,?e) e\y''2([0,r];ff)nL2(0,r;D(A)),(j)GL2(0,7';t/) subject to 

(... \ u'^{t) + vAu^{t)+B{u^{t)) = <^i^{t)+f{t)+^^{t) ,      .     Me(0) = Me(r) 
^    ^ \-q',{t)+^M.{t) + B'{u,{t)rq^{t) = C\CMt)       ''^^"''^'    q,{Q) = q,{T). 

By Lemma 4.1 and Proposition 3.2 we know that the system (4.1) has at least one solution (MEJ^E), which also solves the 
Problem (3.l)-(3.2). 
Instead of (i) we shall use the following hypothesis. 
(i)' The function A : t/ -4- R is convex, lower semi-continuous and satisfies 

«l<t)|u + P<%)<«i|<t>ly + Pi, V^et/ 

for some CO, C0| > 0, P,Pi € R. 

Proposition 4.1 Under hypotheses (i)', (1.4) problem (P^,) has at least one solution {uz,qz,^t)- 

Proof. ... (proof to be presented elsewhere)... □ 

Proposition 4.2 For e —>■ 0 we have 

(4.13) lim inf (Pe) = infsup(/'). 

Proof ... (proof to be presented elsewhere)... D 
Recall that if ^ is a closed convex subset of H, we may define the indicator function Ifc :V ->R 

- , .     / 0        if^G^, 

and the normal cone 
NKiq) = diKiq) = {q* G V*; (q- W,q*) >OWqGK} VqeK. 

We denote by K = {q € L^(0,r;//);e||i5'||^2foTH) - ^}• ^°^^ ^^^^ '^^^ indicator function is used for convenience in the 
derivation, by incorporating the restriction ofqtoK in the cost function. 
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In order to get necessary optimality conditions for the approximate problem (P^x) we encounter again the obstacle of 
nonuniqueness for the solution to system (4.1). Let consider instead the following optimization problem: minimize 

over (Mc^e) e W^'^([0,T];H)nL^{0,T;D{A)), ^ e L^{0,T;U), ¥i,¥2 € L^{0,T\H) subject to 

fA^^^ /  4(0+vAM£(0+B(«E(f)) = ®2<^(0+/(0+M0+Vl(0 ,^/oT^   «E(0) = «e(0) 
^       ' I  -q',{t)+vAq,{t)+B'{ue{t)yq,it) = C,*C,«e(0 + V2(f)      '' ^ ^"'^ ^' q,iO) = q,{T). 

We note that {ut,qt) is again a solution to problem (3.1). 

Using an argument similar to Proposition 4.1 we get that {P^x) has at least one solution (<t)A.,"eX.)?eX,> Va>V2;t)- 

Proposition 4.3 For e > 0 sufficiently small we have 

(4.15) lim      inf     (PeO =  inf (^e)- 

Proof. ... (proof to be presented elsewhere)... D 
We note that Propositions 4.2 and 4.3 prove that 

(4.17) lim lim      inf      (Pex) = infsup(/'). 

5   Necessary Conditions for Dptimality 

Here we shall establish a maximum principle type result for problem {P^^i}. 

Theorem 5.1 Under hypotheses (1.4), (i)' if ((t)x,«eXi9E>..¥iX,¥2x) '« optimal in problem {Pfx) then there is Uex,QeX e 
W^'^{[0,T];H)nL?-iO,T;D{A)) such that 

-U[ + vAUx + {B'{u^x))*Ux = C;C^Qx-B'iQxyq^x-C*^Qu^x, a.e. t G (0,r) 

Q!x + ^AQx + {B'{u^x))Qx = ^Ux-^zX, a.e.te{0,T) 

Ux(0) = Ux{T), Qxm = QxiT). 

(5.2) Va = ^x, ¥2X = ^Qx, 'B^<^x 6 9/!(Qx), a.e. in (0,T). 

Here dh:U-^Uis the subdifferential of /i. 
Proof. ... (proof to be presented elsewhere)... D 

Due to the lack of differentiability in application (j) ->^ «(<])), we have replaced problem (P) by a sequence of approxi- 
mating problems (Pex)^ for which we can compute necessary conditions for optimality. An algorithm of gradient type is 
now proposed in order to compute a optimal solution to problem (Ptx)- We use iterative processes to solve the inner loop 
(Pg^x) and the outer loop (Pg). 
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6   Numerical algorithm 

Let us assume that Ci = / and rewrite the optimality system in the following form 

(A ^A\' rM^(r) + v/\«e(0 + B(«E(0) = «2^(0 +/(0 +e9e(0 + Vi(0, t e (0,7), Me(0) = u^{T) 
^^■^^> 1^*9 = /'«(;?.) K + V2) 

ic 1V IKU = PR(^) (QX - utx - B'iQxTqzx) 

1. Initialize e, X > 0 and ())^ onte[0,T]. 

2. Initialize i = 0 and (.Vlx>'^x) "" [^' ^]' ^^^''^ ' '^ '^^ iteration index and {¥x'V]X^V2x) represent the approximation of 
the control and forcing that we use in J^x- 
3. Determine the state {u}^,q'^y) on [0,7]/row the state equation (4.14)'. 

4. Determine the adjoint state {Ul,Q^)from the adjoint equation (5.1)'. 
5. Determine local expressions for the gradients 

6. Determine the updated control (j)^"*"' and forcing Y^^ ,\^^^ with 

€'=€-^'^i€0, ¥;t'=Va-«''^(*LV2.), v^x'=^2x-^'^i<^Mx), 

where 0 < a' < 1. 
7. Increment index r = (+ 1. Repeat from step 3 until converged. 

8. Reset ^l = ^{'"^a = Va-^x = ^2X- 
9.X = X/2. Repeat from step 3 until stop criterion in K is satisfied (eg., ||\i;ixll + ll¥2X,ll <Tolerance). 
At this point we have solved problem (Pg). 
]0. Reset ifl = <^[. 
] 1. e = e/2. Repeat from step 2 until stop criterion in e is satisfied. 
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